@phdthesis{Daeullary2024, author = {D{\"a}ullary, Thomas}, title = {Establishment of an infection model of the human intestinal epithelium to study host and pathogen determinants during the \(Salmonella\) Typhimurium infection process}, doi = {10.25972/OPUS-31154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311548}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {According to the WHO, foodborne derived enteric infections are a global disease burden and often manifest in diseases that can potentially reach life threatening levels, especially in developing countries. These diseases are caused by a variety of enteric pathogens and affect the gastrointestinal tract, from the gastric to the intestinal to the rectal tissue. Although the complex mucosal structure of these organs is usually well prepared to defend the body against harmful agents, specialised pathogens such as Salmonella enterica can overcome the intestinal defence mechanism. After ingestion, Salmonella are capable of colonising the gut and establishing their proliferative niche, thereby leading to inflammatory processes and tissue damage of the host epithelium. In order to understand these processes, the scientific community in the last decades mostly used cell line based in vitro approaches or in vivo animal studies. Although these approaches provide fundamental insights into the interactions between bacteria and host cells, they have limited applicability to human pathology. Therefore, tissue engineered primary based approaches are important for modern infection research. They exhibit the human complexity better than traditional cell lines and can mimic human-obligate processes in contrast to animal studies. Therefore, in this study a tissue engineered human primary model of the small intestinal epithelium was established for the application of enteric infection research with the exemplary pathogen Salmonella Typhimurium. To this purpose, adult stem cell derived intestinal organoids were used as a primary human cell source to generate monolayers on biological or synthetic scaffolds in a Transwell®-like setting. These tissue models of the intestinal epithelium were examined for their comparability to the native tissue in terms of morphology, morphometry and barrier function. Further, the gene expression profiles of organotypical mucins, tight junction-associated proteins and claudins were investigated. Overall, the biological scaffold-based tissue models showed higher similarity to the native tissue - among others in morphometry and polarisation. Therefore, these models were further characterised on cellular and structural level. Ultrastructural analysis demonstrated the establishment of characteristic microvilli and tight-junction connections between individual epithelial cells. Furthermore, the expression pattern of typical intestinal epithelial protein was addressed and showed in vivo-like localisation. Interested in the cell type composition, single cell transcriptomic profiling revealed distinct cell types including proliferative cells and stem cells, progenitors, cellular entities of the absorptive lineage, Enterocytes and Microfold-like cells. Cells of the secretory lineage were also annotated, but without distinct canonical gene expression patterns. With the organotypical polarisation, protein expression, structural features and the heterogeneous cell composition including the rare Microfold-like cells, the biological scaffold-based tissue model of the intestinal epithelium demonstrates key requisites needed for infection studies with Salmonella. In a second part of this study, a suitable infection protocol of the epithelial tissue model with Salmonella Typhimurium was established, followed by the examination of key features of the infection process. Salmonella adhered to the epithelial microvilli and induced typical membrane ruffling during invasion; interestingly the individual steps of invasion could be observed. After invasion, time course analysis showed that Salmonella resided and proliferated intracellularly, while simultaneously migrating from the apical to the basolateral side of the infected cell. Furthermore, the bacterial morphology changed to a filamentous phenotype; especially when the models have been analysed at late time points after infection. The epithelial cells on the other side released the cytokines Interleukin 8 and Tumour Necrosis Factor α upon bacterial infection in a time-dependent manner. Taken together, Salmonella infection of the intestinal epithelial tissue model recapitulates important steps of the infection process as described in the literature, and hence demonstrates a valid in vitro platform for the investigation of the Salmonella infection process in the human context. During the infection process, intracellular Salmonella populations varied in their bacterial number, which could be attributed to increased intracellular proliferation and demonstrated thereby a heterogeneous behaviour of Salmonella in individual cells. Furthermore, by the application of single cell transcriptomic profiling, the upregulation of Olfactomedin-4 (OLFM4) gene expression was detected; OLFM4 is a protein involved in various functions including cell immunity as well as proliferating signalling pathways and is often used as intestinal stem cell marker. This OLFM4 upregulation was time-dependent, restricted to Salmonella infected cells and seemed to increase with bacterial mass. Investigating the OLFM4 regulatory mechanism, nuclear factor κB induced upregulation could be excluded, whereas inhibition of the Notch signalling led to a decrease of OLFM4 gene and protein expression. Furthermore, Notch inhibition resulted in decreased filamentous Salmonella formation. Taken together, by the use of the introduced primary epithelial tissue model, a heterogeneous intracellular bacterial behaviour was observed and a so far overlooked host cell response - the expression of OLFM4 by individual infected cells - could be identified; although Salmonella Typhimurium is one of the best-studied enteric pathogenic bacteria. This proves the applicability of the introduced tissue model in enteric infection research as well as the importance of new approaches in order to decipher host-pathogen interactions with higher relevance to the host.}, subject = {Salmonella typhimurium}, language = {en} } @phdthesis{Froehlich2012, author = {Fr{\"o}hlich, Kathrin}, title = {Assigning functions to Hfq-dependent small RNAs in the model pathogen Salmonella Typhimurium}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85488}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Non-coding RNAs constitute a major class of regulators involved in bacterial gene expression. A group of riboregulators of heterogeneous size and shape referred to as small regulatory RNAs (sRNAs) control trans- or cis-encoded genes through direct base-pairing with their mRNAs. Although mostly inhibiting their target mRNAs, several sRNAs also induce gene expression. An important co-factor for sRNA activity is the RNA chaperone, Hfq, which is able to rearrange intramolecular secondary structures and to promote annealing of complementary RNA sequences. In addition, Hfq protects unpaired RNA from degradation by ribonucleases and thus increases sRNA stability. Co-immunoprecipitation of RNA with the Hfq protein, and further experimental as well as bioinformatical studies performed over the last decade suggested the presence of more than 150 different sRNAs in various Enterobacteria including Escherichia coli and Salmonellae. So-called core sRNAs are considered to fulfill central cellular activities as deduced from their high degree of conservation among different species. Approximately 25 core sRNAs have been implicated in gene regulation under a variety of environmental responses. However, for the majority of sRNAs, both the riboregulators' individual biological roles as well as modes of action remain to be elucidated. The current study aimed to define the cellular functions of the two highly conserved, Hfq-dependent sRNAs, SdsR and RydC, in the model pathogen Salmonella Typhimurium. SdsR had been known as one of the most abundant sRNAs during stationary growth phase in E. coli. Examination of the conservation patterns in the sdsR promoter region in combination with classic genetic analyses revealed SdsR as the first sRNA under direct transcriptional control of the alternative σ factor σS. In Salmonella, over-expression of SdsR down-regulates the synthesis of the major porin OmpD, and the interaction site in the ompD mRNA coding sequence was mapped by a 3'RACE-based approach. At the post-transcriptional level, expression of ompD is controlled by three additional sRNAs, but SdsR plays a specific role in porin regulation during the stringent response. Similarly, RydC, the second sRNA adressed in this study, was initially discovered in E. coli but appeared to be conserved in many related γ-proteobacteria. An interesting aspect of this Hfq-dependent sRNAs is its secondary structure involving a pseudo-knot configuration, while the 5' end remains single stranded. A transcriptomic approach combining RydC pulse-expression and scoring of global mRNA changes on microarrays was employed to identify the targets of this sRNA. RydC specifically activated expression of the longer of two versions of the cfa mRNA encoding for the phospholipid-modifying enzyme cyclopropane fatty acid synthase. Employing its conserved single-stranded 5' end, RydC acts as a positive regulator and masks a recognition site of the endoribonuclease, RNase E, in the cfa leader.}, subject = {Small RNA}, language = {en} } @phdthesis{Goetz2010, author = {G{\"o}tz, Andreas}, title = {Replikation von enteroinvasiven Escherichia coli und Salmonella enterica Serovar Typhimurium St{\"a}mmen in Epithelzellen unter besonderer Betrachtung des Kohlenstoffmetabolismus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57292}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Schlagw{\"o}rter: Salmonella , Salmonella enterica , Salmonella typhimurium , Salmonellose , Escherichia coli , Shigella , Infektion , Bakterielle Infektion , Zellkultur , HeLa-Zelle , Apoptosis , Metabolismus , Stoffwechsel , Glucose , Glucosetransport , Glucosestoffwechsel , Katabolismus , Kohlenstoff , Kohlenstoffbedarf , Kohlenstoffhaushalt , Kohlenstoffstoffwechsel , Kohlenstoff-13 , Kohlenstoffisotop Salmonella Typhimurium und enteroinvasive E. coli (EIEC) sind fakultativ intrazellul{\"a}re Bakterien aus der Familie der Enterobacteriaceae. W{\"a}hrend erstere sich nach der Internalisierung durch eukaryotische Zellen normalerweise in einem spezialisierten Phagosom, der Salmonella-enthaltenden Vakuole (SCV), vermehren, replizieren EIEC im Zytoplasma der Wirtszellen. In der vorliegenden Arbeit wurde zun{\"a}chst durch Mikroinjektion die F{\"a}higkeit von S. Typhimurium 14028s untersucht, ebenfalls im Zytoplasma von Caco-2-Zellen replizieren zu k{\"o}nnen. Dabei wurde festgestellt, daß ein fr{\"u}her als S. Typhimurium 14028s WT bezeichneter Stamm eine Insertion eines Desoxythymidins an Position 76 des offenen Leserasters von rfbP tr{\"a}gt, einem Gen, dessen Protein an der LPS-Synthese beteiligt ist. Weiterhin synthetisierte dieser Stamm ein rauhes LPS. Aufgrund von Agglutination konnte der Rauh-Stamm nur mit geringem Erfolg mikroinjiziert werden. Hingegen lag 5 h nach der Mikroinjektion einer nicht invasiven Mutante von Salmonella mit vollst{\"a}ndigem LPS der Anteil an Caco-2-Zellen, die mehr als 32 Bakterien enthielten, bei etwa 30 \%. Der Anteil war 2-3 mal h{\"o}her als bei fr{\"u}heren Mikroinjektionen in HeLa-Zellen. Daher wurde das Verhalten von HeLa-Zellen nach einer Infektion durch S. Typhimurium ΔsifA - einer Mutante, die aus der SCV ins Zytoplasma entkommt - untersucht. Dabei wurde festgestellt, daß die sifA-Mutante 10 h nach der Infektion die Aktivit{\"a}t der Caspasen 9 und 3 in HeLa-Zellen, aber nicht in Caco-2-Zellen induziert. In weiteren Versuchen wurde die Bedeutung von Glukose, Glukose-6-phosphat und Mannose als Kohlenstoffquellen f{\"u}r die extra- und intrazellul{\"a}re Replikation zweier Isolate enteroinvasiver E. coli und eines S. Typhimurium Stammes analysiert. Zu diesem Zweck wurden zun{\"a}chst definierte Mutanten in den beiden wichtigsten Phosphoenolpyruvat-abh{\"a}ngigen Phosphotransferasesystemen (PTS) f{\"u}r die Aufnahme von Glukose und Mannose, ptsG und manXYZ, sowie im Antiporter f{\"u}r die Aufnahme von Glukose-6-phosphat, uhpT, konstruiert. Bei Wachstum im Minimalmedium mit Glukose als einziger C-Quelle waren die Generationszeiten aller ΔptsG- und ΔptsG, manXYZ-Mutanten im Vergleich zu den Wildst{\"a}mmen deutlich verl{\"a}ngert. Ebenso wuchsen ΔmanXYZ-Mutanten bzw. ΔuhpT-Mutanten deutlich langsamer auf Mannose bzw. Glukose-6-phosphat. Jedoch ergaben sich hierbei Stamm-spezifische Unterschiede. So erreichte EIEC 4608-58 ΔuhpT in der station{\"a}ren Phase eine {\"a}hnliche Zelldichte wie der Wildstamm in Gegenwart von Glukose-6-phosphat und eine ΔptsG, manXYZ-Mutante von S. Typhimurium 14028s konnte immer noch effizient mit Glukose wachsen. Infektionsversuche mit Caco-2-Zellen zeigten weiterhin, daß die Deletion von ptsG zu einer signifikanten Erh{\"o}hung der Adh{\"a}renz und Invasivit{\"a}t von EIEC 4608-58 f{\"u}hrt, w{\"a}hrend sich die intrazellul{\"a}ren Generationszeiten aller hier untersuchten Mutanten kaum ver{\"a}nderten. Selbst die ΔptsG, manXYZ, uhpT-Dreifachmutanten der drei hier verwendeten Enterobakterien und die ΔptsG, manXYZ, glk-Mutante von S. Typhimurium 14028s konnten immer noch in Caco-2-Zellen replizieren, wenn auch mit Stamm-spezifisch verringerten Geschwindigkeiten. 13C-Markierungsexperimente mit [U-13C6]-Glukose als Substrat ergaben jedoch, daß in der Tat alle hier untersuchten enterobakteriellen Wildst{\"a}mme Glukose w{\"a}hrend der Replikation in Caco-2-Zellen unter Zellkulturbedingungen verwerten. Glukose-6-phosphat, Glukonat oder Fetts{\"a}uren konnten dagegen als wichtigste Kohlenstoffquellen f{\"u}r das intrazellul{\"a}re Wachstum ausgeschlossen werden. EIEC 4608-58 metabolisierte Glukose jedoch weniger effizient als EIEC HN280 und schien zudem noch zus{\"a}tzlich C3-Substrate aus der Wirtszelle aufzunehmen. Das Markierungsmuster zeigte einen Stamm-spezifischen Kohlenstofffluß durch Glykolyse und/oder Entner-Doudoroff-Weg, Pentosephosphatzyklus, Citratzyklus und den anaplerotischen Reaktionen zwischen PEP und Oxalacetat. Mutanten mit Deletionen in ptsG und manXYZ konnten auf alternative C3-Substrate wechseln und glichen dies durch eine erh{\"o}hte Aufnahme von Aminos{\"a}uren aus den Wirtszellen aus.}, subject = {Escherichia coli}, language = {de} } @phdthesis{Knuth2004, author = {Knuth, Karin}, title = {Identifizierung von essentiellen Genen in Salmonella typhimurium und Listeria monocytogenes durch Genom-weite Insertions-Duplikations-Mutagenese}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10003}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Die in dieser Arbeit etablierte Insertions-Duplikations-Mutagenese IDM erm{\"o}glicht es, das Genom von pathogenen Bakterien zu mutagenisieren und die so generierte Mutantenbank im high-throughput-Format auf Gene zu untersuchen, die unter bestimmten Bedingungen f{\"u}r das infekti{\"o}se Potential oder f{\"u}r das {\"U}berleben dieser Keime von Bedeutung sind. Die Grundlage von IDM bildet ein konditional replizierender Vektor, in den eine Genbank des Wirtsorganismus kloniert wird und der unter nicht-permissiven Replikationsbedingungen mittels homologer Rekombination ins Chromosom integriert und dadurch einen Gen-Knockout bedingt. Das IDM-Verfahren weist gegen{\"u}ber der Transposon-Mutagenese den Vorteil auf, dass das Genom nach dem Zufallsprinzip saturierend mutagenisiert werden kann und dass keine hot spots f{\"u}r die Insertion auftreten. Dar{\"u}ber hinaus kann der mutierte Genlocus nach Screening der Mutanten schnell per PCR identifiziert werden, indem die Exzision des Vektors induziert und das klonierte, homologe Fragment sequenziert wird. Die Insertion des Vektors ins Chromosom und damit der Gen-Knockout ist selbst ohne Selektionsdruck sehr stabil, so dass die Mutanten im Zellkultur- oder Tier-System untersucht werden k{\"o}nnen. IDM wurde im Rahmen dieser Arbeit erfolgreich auf Salmonella enterica Serovar typhimurium und Listeria monocytogenes angewandt. Die Applikation von IDM auf S. typhimurium hatte zum Ziel, Gene zu identifizieren, deren Produkte f{\"u}r das {\"U}berleben dieses Gram-negativen Keims in Vollmedium unter Laborbedingungen essentiell sind. Ausgehend von 14.000 S. typhimurium Fragmentbank-Klonen konnten durch Induktion der Integration des Vektors 262 Klone identifiziert werden, f{\"u}r welche die Mutation zu einem lethalen Ph{\"a}notyp f{\"u}hrte. 116 der 262 entsprechenden Proteine konnte durch IDM erstmalig eine essentielle Funktion f{\"u}r die Vitalit{\"a}t von S. typhimurium zugewiesen werden. Darunter befinden sich sowohl Proteine, die homolog sind zu Proteinen anderer klinisch-relevanter Keime, als auch Proteine, die Salmonella-spezifisch sind. Der gr{\"o}ßte Teil der identifizierten Proteine ist in die Speicherung und Weitergabe von Information (Transkription, Translation, DNA-Reparatur etc.) involviert, viele sind allerdings auch Proteine unbekannter Funktion. Die Essentialit{\"a}t der durch IDM identifizierten Gene konnte durch die Konstruktion von konditional lethalen Mutanten best{\"a}tigt werden. IDM ist demnach das erste Mutagenese-Verfahren, welches das essentielle Gen-Set von S. typhimurium f{\"u}r das {\"U}berleben in Vollmedium zu definieren vermochte. Basierend auf den IDM Daten konnte es auf 511 Gene, d.h. auf 11 \% des Gesamt-Genoms beziffert werden. Bei der Applikation von IDM auf L. monocytogenes lag der Fokus auf der Identifizierung von Genen, die f{\"u}r das {\"U}berleben dieses Gram-positiven Bakteriums im Zytosol von eukaryontischen Zellen von Bedeutung sind. Im Screening von bis dato 720 der 1491 L. monocytogenes Insertionsmutanten auf ein attenuiertes Replikationsverhalten in Caco-2 Zellen konnten 69 Mutanten selektioniert werden. In diesen Mutanten sind Gene ausgeknockt, deren Produkte haupts{\"a}chlich wichtige Funktionen in der N{\"a}hrstoffbereitstellung, in der Energiesynthese und im Metabolismus inne haben. Mit der Insertions-Duplikations-Mutagenese IDM steht ein molekulares Werkzeug zur Verf{\"u}gung, welches f{\"u}r die Identifzierung neuer targets f{\"u}r sowohl Breitband- als auch Spezies-spezifische Antiinfektiva eingesetzt werden kann und welches unbekannten Proteinen eine biologische Funktionen zuweisen kann.}, subject = {Salmonella typhimurium}, language = {de} } @phdthesis{Daniels1999, author = {Daniels, Justin John Douglas}, title = {Interaction of Salmonella typhimurium and Listeria monocytogenes with the murine host}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1073}, school = {Universit{\"a}t W{\"u}rzburg}, year = {1999}, abstract = {Food borne pathogens that cause systemic disease must cross the intestinal barrier. Many of these pathogens, eg Salmonella typhimurium and Shigella flexneri, use M cells, found only within the follicle associated epithelium (FAE) that overlies Peyer's patches and other lymphoid follicles, to enter the host. This study is primarily an investigation into the interaction of S. typhimurium and Listeria monocytogenes with the intestinal epithelium, representing the early stage of an infection.}, subject = {Maus}, language = {en} } @article{LutzDeuberCaviezeletal.1988, author = {Lutz, Werner K. and Deuber, R. and Caviezel, M. and Sagelsdorff, P. and Friederich, U. and Schlatter, C.}, title = {Trenbolone growth promotant: covalent DNA binding in rat liver and in Salmonella typhimurium, and mutagenicity in the Ames test}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60897}, year = {1988}, abstract = {DNA binding in vivo: (6,7-\(^3\)H]ß-trenbolone (ß-TBOH) was administered p.o. and i.p. to rats. After 8 or 16 h, DNA was isolated from the livers and purified to constant specific radioactivity. Enzymatic digestion to deoxyribonucleotides and separation by HPLC revealed about 90\% ofthe DNA radioactivity eluting in the form of possible TBOH-nucleotide adducts. The extent of this genotoxicity, expressed in units of the Covalent Binding Index, CBI = (~mol TBOH bound per mol nucleotide)/(mmol TBOH administered per kg body weight) spanned from 8 t~ 17, i. e. was in the range found with weak genotoxic carcmogens. Ames test: low doses of ß-TBOH increased the number of revertants in Salmonella strain TAl 00 reproducibly and m a dose-dependent manner. The mutagenic potency was 0.2 revertants per nmol after preincubation of the bacteria (20 min at 37° C) with doses between 30 and 60 \(\mu\)g per plate (47 and 94 \(\mu\)g/ml preincubation mixture). Above this dose, the number of revertants decreased to control values, accompanied by a reduction in survival. The addition of rat liver S9 inhibited the mutagenicity. DNA binding in vitro: calf thymus DNA was incubated with tritiated ß-TBOH with and without rat liver S9 Highest DNA radioactivities were determined in the absence of the "activation" system. Addition of inactive S9 (without cofactors) reduced the DNA binding by a factor of up to 20. Intermediate results were found with active S9. DNA binding in Salmonella: ß-TBOH was irreversibly bound to DNA isolated from S. typhimurium TA100 after incubation of bacteria with [\(^3\)H]ß-TBOH. Conclusions: Covalent DNA binding appears to be the mechanism of an activation-independent ("direct") mutagenicity of TBOH which is not easily detected because of the bactericidal activity. The genotoxicity risk arising from exposure of humans to trenbolone residues in meat was estimated using the in vivo data and compared to that from the exposure to unavoidable genotoxins aflatoxin B1 and dimethylnitrosamine. It ts concluded that trenbolone residues represent only a low genotoxic risk.}, subject = {Toxikologie}, language = {en} } @article{HackerHofHughesetal.1985, author = {Hacker, J{\"o}rg and Hof, H. and Hughes, C. and Goebel, W.}, title = {Salmonella typhimurium strains carrying hemolysin plasmids and cloned hemolysin. genes from Escherichia coli}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40309}, year = {1985}, abstract = {Like all other Salmonella typhimurium strains examined, the smooth variants SF1397 (L T2) and 1366 and also their semi-rough and rough derivatives are non-haemolytic. Nevertheless, two haemolysin (Hly) plasmids of E. coli belonging to the inc groups incFllI,lv (pSU316) and incIz (pHly152) were able to be introduced into these strains by conjugation and stably maintained. A considerable percentage of the Hly+ transconjugants obtained had lost parts of their O-side chains, a result of selection for the better recipient capability of « semi-rough» variants rather than the direct influence of the Hly+ plasmids themselves. In contrast to the incF1lI1V plasmid pSU316, which exhibited higher conjugation rates with rough recipients, the incIz plasmid pHly152 was accepted best by smooth strains. Transformation with cloned E. coli haemolysin (hly) determinant was inefficient ( <10-8) for smooth strains, but 102-103 times higher for rough recipients, and was increased by the use of Salmonella-modified DNA. The transform ants and transconjugants were relatively stable and showed the same haemolytic activity as the E. coli donor strains. The virulence of the Hly+ smooth, semi-rough and rough S. typhimurium strains was tested in two mouse models, and neither the mortality rate nor the ability to multiply within the mouse spleen was influenced by the hly determinants.}, language = {en} } @article{HofEmmerlingHackeretal.1982, author = {Hof, H. and Emmerling, P. and Hacker, J{\"o}rg and Hughes, C.}, title = {The role of macrophages in primary and secondary infection of mice with Salmonella typhimurium}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40248}, year = {1982}, abstract = {Elimination of macrophages with high-molecular dextran sulphate (OS) markedly impairs resistance of mice to primary infection with smooth, virulent strains of Salmonella typhimurium, whereas stimulation of this system by killed Bordetella pertussis organisms increases resistance. In infection with rough, avirulent strains of S. iyphimurium the elimination of macro phages was not followed by an essential loss of resistance, and it appears that other non-specific defence mechanisms, for example the complement system, may have compensated for the lack of macrophages. Macrophages, therefore, play an important role in defence during primary infection with virulent strains. In immunity to challenge infection with S. typhimurium, macrophages play an even more significant role. Treatment with OS completely removes immunity, and both humoral and cell-mediated immune mechanisms seem to require the participation of macrophages.}, language = {en} }