@article{ZieglerAlmosMcNeilletal.2020, author = {Ziegler, Georg C. and Almos, Peter and McNeill, Rhiannon V. and Jansch, Charline and Lesch, Klaus-Peter}, title = {Cellular effects and clinical implications of SLC2A3 copy number variation}, series = {Journal of Cellular Physiology}, volume = {235}, journal = {Journal of Cellular Physiology}, number = {12}, doi = {10.1002/jcp.29753}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218009}, pages = {9021 -- 9036}, year = {2020}, abstract = {SLC2A3 encodes the predominantly neuronal glucose transporter 3 (GLUT3), which facilitates diffusion of glucose across plasma membranes. The human brain depends on a steady glucose supply for ATP generation, which consequently fuels critical biochemical processes, such as axonal transport and neurotransmitter release. Besides its role in the central nervous system, GLUT3 is also expressed in nonneural organs, such as the heart and white blood cells, where it is equally involved in energy metabolism. In cancer cells, GLUT3 overexpression contributes to the Warburg effect by answering the cell's increased glycolytic demands. The SLC2A3 gene locus at chromosome 12p13.31 is unstable and prone to non-allelic homologous recombination events, generating multiple copy number variants (CNVs) of SLC2A3 which account for alterations in SLC2A3 expression. Recent associations of SLC2A3 CNVs with different clinical phenotypes warrant investigation of the potential influence of these structural variants on pathomechanisms of neuropsychiatric, cardiovascular, and immune diseases. In this review, we accumulate and discuss the evidence how SLC2A3 gene dosage may exert diverse protective or detrimental effects depending on the pathological condition. Cellular states which lead to increased energetic demand, such as organ development, proliferation, and cellular degeneration, appear particularly susceptible to alterations in SLC2A3 copy number. We conclude that better understanding of the impact of SLC2A3 variation on disease etiology may potentially provide novel therapeutic approaches specifically targeting this GLUT.}, language = {en} } @phdthesis{Pedrotti2018, author = {Pedrotti, Lorenzo}, title = {The SnRK1-C/S1-bZIPs network: a signaling hub in Arabidopsis energy metabolism regulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116080}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The control of energy homeostasis is of pivotal importance for all living organisms. In the last years emerged the idea that many stress responses that are apparently unrelated, are actually united by a common increase of the cellular energy demand. Therefore, the so called energy signaling is activated by many kind of stresses and is responsible for the activation of the general stress response. In Arabidopsis thaliana the protein family SnF1- related protein kinases (SnRK1) is involved in the regulation of many physiological processes but is more known for its involvement in the regulation of the energy homeostasis in response to various stresses. To the SnRK1 protein family belong SnRK1.1 (also known as KIN10), SnRK1.2 (KIN11), and SnRK1.3 (KIN12). SnRK1 exerts its function regulating directly the activity of metabolic enzymes or those of key transcription factors (TFs). The only TFs regulated by SnRK1 identified so far is the basic leucine zipper (bZIP) 63. bZIP63 belongs to the C group of bZIPs (C-bZIPs) protein family together with bZIP9, bZIP10, and bZIP25. SnRK1.1 phosphorylates bZIP63 on three amino acids residues, serine (S) 29, S294, and S300. The phosphorylation of tbZIP63 is strongly related to the energy status of the plant, shifting from almost absent during the normal growth to strongly phosphorylated when the plant is exposed to extended dark. bZIPs normally bind the DNA as dimer in order to regulate the expression of their target genes. C-bZIPs preferentially form dimers with S1-bZIPs, constituting the so called C/S1- bZIPs network. The SnRk1 dependent phosphorylation of bZIP63 regulates its activation potential and its dimerization properties. In particular bZIP63 shift its dimerization preferences according to its phosphorylation status. The non-phosphorylated form of bZIP63 dimerize bZIP1, the phosphorylates ones, instead, forms dimer with bZIP1, bZIP11, and bZIP63 its self. Together with bZIP63, S1-bZIPs are important mediator of part of the huge transcriptional reprogramming induced by SnRK1 in response to extended dark. S1-bZIPs regulate, indeed, the expression of 4'000 of the 10'000 SnRK1-regulated genes in response to energy deprivation. In particular S1-bZIPs are very important for the regulation of many genes encoding for enzymes involved in the amino acid metabolism and for their use as alternative energy source. After the exposition for some hours to extended dark, indeed, the plant make use of every energy substrate and amino acids are considered an important energy source together with lipids and proteins. Interestingly, S1- bZIPs regulate the expression of ETFQO. ETFQO is a unique protein that convoglia the electrons provenienti from the branch chain amino acids catabolism into the mitochondrial electron transport chain. The dimer formed between bZIP63 and bZIP2 recruits SnRK1.1 directly on the chromatin of ETFQO promoter. The recruitment of SnRK1 on ETFQO promoter is associated with its acetylation on the lysine 14 of the histone protein 3 (K14H3). This chromatin modification is normally asociated with an euchromatic status of the DNA and therefore with its transcriptional activation. Beside the particular case of the regulation of ETFQO gene, S1-bZIPs are involved in the regulation of many other genes activated in response of different stresses. bZIP1 is for example an important mediator of the salt stress response. In particular bZIP1 regulates the primary C- and N-metabolism. The expression of bZIP1, in response of both salt ans energy stress seems to be regulated by SnRK1, as it is the expression of bZIP53 and bZIP63. Beside its involvement in the regulation of the energy stress response and salt response, SnRK1 is the primary activators of the lipids metabolism during see germination. SnRK1, indeed, controls the expression of CALEOSINs and OLEOSINs. Those proteins are very important for lipids remobilization from oil droplets. Without their expression seed germination and subsequent establishment do not take place because of the absence of fuel to sustain these highly energy costly processes, which entirely depend on the catabolism of seed storages.}, subject = {Ackerschmalwand}, language = {en} } @article{TalmanPrietoMarquesetal.2014, author = {Talman, Arthur M. and Prieto, Judith H. and Marques, Sara and Ubaida-Mohien, Ceereena and Lawniczak, Mara and Wass, Mark N. and Xu, Tao and Frank, Roland and Ecker, Andrea and Stanway, Rebecca S. and Krishna, Sanjeev and Sternberg, Michael J. E. and Christophides, Georges K. and Graham, David R. and Dinglasan, Rhoel R. and Yates, John R., III and Sinden, Robert E.}, title = {Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility}, series = {Malaria Journal}, volume = {13}, journal = {Malaria Journal}, number = {315}, doi = {10.1186/1475-2875-13-315}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115572}, year = {2014}, abstract = {Background: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. Methods: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. Results: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. Conclusions: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.}, language = {en} } @article{PfeifferGuglielmiDombertJablonkaetal.2014, author = {Pfeiffer-Guglielmi, Brigitte and Dombert, Benjamin and Jablonka, Sibylle and Hausherr, Vanessa and van Thriel, Christoph and Schobel, Nicole and Jansen, Ralf-Peter}, title = {Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons}, series = {BMC Neuroscience}, volume = {15}, journal = {BMC Neuroscience}, number = {70}, issn = {1471-2202}, doi = {10.1186/1471-2202-15-70}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116049}, year = {2014}, abstract = {Background: Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Results: Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. Conclusions: We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission.}, language = {en} } @article{Truswell2013, author = {Truswell, Arthur Stewart}, title = {Medical history of obesity}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78910}, year = {2013}, abstract = {This paper contains the following sections, in approximate chronological order: Early years, Scientific research on energy metabolism, Clinical teaching, Evidence on health risks, Slow recognition of obesity in diabetes, Depression and war, some Obesity research continued in the 1950s and 1960s, New approaches to management, a Universal standard weight for height, Luxuskonsumption, Calories (incompletely) replaced by Joules, Food intakes of obese people, Genetics, unexpected Surge of obesity from 1980, Diabetes, Scarcity of effective, safe drugs for obesity, Leptin and Ghrelin stimulate basic research, Why has the obesity epidemic happened? What is the best weight-reducing diet? Bariatric surgery}, subject = {Fettsucht}, language = {en} } @phdthesis{Gonnert2005, author = {Gonnert, Falk Alexander}, title = {Entwicklung eines Modells zur mikrokalorimetrischen Analyse der Wirkung pharmakologischer Substanzen auf den Energiestoffwechsel benigner und maligner Zelllinien am Beispiel von 2,4-Dinitrophenol}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21495}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Krebs durch gezielte Zerst{\"o}rung seiner Energien zu besiegen, ist einer von mehreren vielversprechenden neuen experimentellen Therapieans{\"a}tzen, die insbesondere in den letzten Jahren in den Fokus des Interesses ger{\"u}ckt sind. Die vorliegende Arbeit hatte zum Ziel, ein Modell zu entwickeln, mit dem die Wirkung von 2,4-Dinitrophenol (2,4-DNP), ein Entkoppler der oxidativen Phosphorylierung, auf den W{\"a}rmehaushalt einer Vielzahl an benignen und malignen Zelllinien mit der Methode der Mikrokalorimetrie analysiert werden kann. Nach zahlreichen Vorversuchen konnte schließlich ein ad{\"a}quates Messsystem definiert werden, das den Anforderungen eines großen Stichprobenumfangs gerecht wurde: die zu untersuchenden Zellen wurden auf 200 mm2 großen Glaspl{\"a}ttchen als Monolayer kultiviert und in sonderangefertigten Stahlampullen in einem Mediumvolumen von 3.6 ml unter Verwendung eines geschlossenen Mikrokalorimetriesystems hinsichtlich ihrer W{\"a}rmeproduktion f{\"u}r eine Dauer von 9 Stunden untersucht. St{\"o}rfaktoren wie insbesondere Mediumver{\"a}nderungen oder Substratlimitierungen konnten durch erg{\"a}nzende Untersuchungen ausgeschlossen werden. Die Vorversuche und erste Datenanalysen der Versuchsreihen mit der pA1-Zelllinie identifizierten einen unerwarteten St{\"o}rfaktor: die Pl{\"a}ttchendichten variierten trotz strikter Standardisierung bei der Kultivierung der Monolayer erheblich. Um diesen St{\"o}rfaktor in den Datenanalysen zu ber{\"u}cksichtigten, wurde daher eine verl{\"a}ssliche und exakte Methode zur Ermittlung der Pl{\"a}ttchendichten gesucht. 3 verschiedenen Methoden wurden hierf{\"u}r auf ihre Eignung {\"u}berpr{\"u}ft, bis schließlich der LDH-Test als ad{\"a}quates Verfahren zur Bestimmung der Pl{\"a}ttchendichten ausgew{\"a}hlt wurde. Anschließend erfolgte ein Testdurchlauf mit 4 Zelllinien und 4 unterschiedlichen Dosisstufen 2,4-DNP (zuz{\"u}glich der Nulldosis). Nach Durchf{\"u}hrung der ersten Versuchsreihen mit der pA1 Zelllinie konnte ein weiterer St{\"o}rfaktor identifiziert werden: der ‚crowding-Effekt'. Dieser beschreibt das Ph{\"a}nomen, dass mit zunehmender Zellzahl in einer Kultur die Stoffwechselrate und somit auch die W{\"a}rmeproduktion einer Zelle abnimmt. Der crowding-Effekt wurde im Rahmen mikrokalorimetrischer Arbeiten unter Verwendung offener Systeme und somit Zellsuspensionen mehrfach beschrieben und diskutiert. Die vorliegende Arbeit konnte einen crowding-Effekt nun auch f{\"u}r Monolayer nachweisen. F{\"u}r die vorliegenden Daten konnte der Zusammenhang zwischen W{\"a}rmeproduktion und Zellzahl mittels Regressionsanalyse mit der mathematischen Funktion lgY=-0.83lgX+6.31 bei einer Verl{\"a}sslichkeit der Sch{\"a}tzung von R2=0.9003 beschrieben werden. Als spezifische Ursachen f{\"u}r einen crowding-Effekt bei Monolayern wurden angenommen: - Diffusionsprobleme bedingt durch unger{\"u}hrtes Medium um die Pl{\"a}ttchen herum, - wider Erwarten dreidimensionales Wachstum auf den Pl{\"a}ttchen, oder, - Wachstumsinhibition durch Kontakthemmung der Zellen auf den Pl{\"a}ttchen. Der St{\"o}rfaktor crowding-Effekt ist auf Grund seines dynamischen Charakters schwierig zu eliminieren. Dennoch konnten M{\"o}glichkeiten aufgezeigt werden, das Ausmaß des crowding-Effekts deutlich zu reduzieren, so dass das Modell optimiert werden konnte. Der multivariate Charakter sowie der große Umfang der Daten stellte hohe Anforderungen an eine geeignete Methodik f{\"u}r eine Auswertung der Daten. Auf Erfahrungen anderer Arbeiten konnte nicht zur{\"u}ckgegriffen werden, da bis dato keine Arbeiten von solch großem Stichprobenumfang durchgef{\"u}hrt wurden. Einfache statistische Analysen stellten sich als nicht geeignet heraus. Mit dem Wilcoxon-Mann-Whitney-Kennwert und dem Verfahren nach Wei und Lachin konnten jedoch schließlich zwei Instrumente f{\"u}r eine ad{\"a}quate Datenanalytik bestimmt werden, die eine Datenanalyse im Sinne der Fragestellung des Projektes umfassend erlauben. Eine erste Auswertung der Daten des Testdurchlaufs zeigte, dass vor allem niedrigere Dosisstufen im Konzentrationsbereich bis 50 µM 2,4-DNP interessant sind. Erg{\"a}nzende Datenanalysen wiesen darauf hin, dass 2,4-DNP offenbar die Stoffwechselaktivit{\"a}t von Zellen unmittelbar nach Zugabe um einen bestimmten Betrag erh{\"o}ht und diese dann auf diesem Niveau kontinuierlich f{\"u}r eine bestimmte Zeit anh{\"a}lt, bis schließlich ein Wirkmaximum erreicht wird, das von der H{\"o}he der Dosis abh{\"a}ngt. Als Ursachen f{\"u}r die je nach Dosisstufe unterschiedlich lange Wirkung von 2,4-DNP wurden verschiedene Ursachen diskutiert, die es weiter abzukl{\"a}ren gilt. Wahrscheinlich scheint jedoch eine Zytotoxizit{\"a}t h{\"o}herer Dosierungen. Durch die erg{\"a}nzende Analytik bestimmter Stoffwechselparameter gelang es, den crowding-Effekt auch f{\"u}r den spezifischen Glucose-Verbrauch nachzuweisen. Zudem konnte gezeigt werden, dass 2,4-DNP nicht nur durch Kurzschluss des Protonengradienten die W{\"a}rmeproduktion erh{\"o}ht, sondern auch den Substratverbrauch der Zelle steigert: bei einer Konzentration von 100 µM 2,4-DNP erh{\"o}hte sich der spezifische Glucoseverbrauch um etwa 50\%. Untersuchungen der Laktatproduktion ließen außerdem vermuten, dass die Stoffwechselsteigerung von 2,4-DNP eher oxidativ bedingt ist. Durch die vorliegenden Arbeit konnte erfolgreich ein geeignetes Messsystems f{\"u}r die mikrokalorimetrische Analyse einer Vielzahl an Zellen etabliert werden. Durch einen anschließenden Testdurchlauf mit 4 unterschiedlichen Zelllinien konnte zudem das System optimiert und eine ad{\"a}quate Methodik f{\"u}r eine aussagekr{\"a}ftige Datenanalyse bestimmt werden. Es steht somit ein Modell zur Verf{\"u}gung, mit dem die W{\"a}rmeproduktion einer Vielzahl an Zelllinien auf die Wirkung von 2,4-DNP, aber auch von anderen Substanzen, untersucht werden kann, was schließlich die Bestimmung von Dosis-Wirkungs-Beziehungen erm{\"o}glicht.}, language = {de} }