@article{GoosDejungJanzenetal.2017, author = {Goos, Carina and Dejung, Mario and Janzen, Christian J. and Butter, Falk and Kramer, Susanne}, title = {The nuclear proteome of Trypanosoma brucei}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0181884}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158572}, pages = {e0181884}, year = {2017}, abstract = {Trypanosoma brucei is a protozoan flagellate that is transmitted by tsetse flies into the mammalian bloodstream. The parasite has a huge impact on human health both directly by causing African sleeping sickness and indirectly, by infecting domestic cattle. The biology of trypanosomes involves some highly unusual, nuclear-localised processes. These include polycistronic transcription without classical promoters initiated from regions defined by histone variants, trans-splicing of all transcripts to the exon of a spliced leader RNA, transcription of some very abundant proteins by RNA polymerase I and antigenic variation, a switch in expression of the cell surface protein variants that allows the parasite to resist the immune system of its mammalian host. Here, we provide the nuclear proteome of procyclic Trypanosoma brucei, the stage that resides within the tsetse fly midgut. We have performed quantitative label-free mass spectrometry to score 764 significantly nuclear enriched proteins in comparison to whole cell lysates. A comparison with proteomes of several experimentally characterised nuclear and non-nuclear structures and pathways confirmed the high quality of the dataset: the proteome contains about 80\% of all nuclear proteins and less than 2\% false positives. Using motif enrichment, we found the amino acid sequence KRxR present in a large number of nuclear proteins. KRxR is a sub-motif of a classical eukaryotic monopartite nuclear localisation signal and could be responsible for nuclear localization of proteins in Kinetoplastida species. As a proof of principle, we have confirmed the nuclear localisation of six proteins with previously unknown localisation by expressing eYFP fusion proteins. While proteome data of several T. brucei organelles have been published, our nuclear proteome closes an important gap in knowledge to study trypanosome biology, in particular nuclear-related processes.}, language = {en} } @article{SchmittKuperEliasetal.2014, author = {Schmitt, Dominik R. and Kuper, Jochen and Elias, Agnes and Kisker, Caroline}, title = {The Structure of the TFIIH p34 Subunit Reveals a Von Willebrand Factor A Like Fold}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {7}, issn = {1932-6203}, doi = {10.1371/journal.pone.0102389}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119471}, pages = {e102389}, year = {2014}, abstract = {RNA polymerase II dependent transcription and nucleotide excision repair are mediated by a multifaceted interplay of subunits within the general transcription factor II H (TFIIH). A better understanding of the molecular structure of TFIIH is the key to unravel the mechanism of action of this versatile protein complex within these vital cellular processes. The importance of this complex becomes further evident in the context of severe diseases like xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy, that arise from single point mutations in TFIIH subunits. Here we describe the structure of the p34 subunit of the TFIIH complex from the eukaryotic thermophilic fungus Chaetomium thermophilum. The structure revealed that p34 contains a von Willebrand Factor A (vWA) like domain, a fold which is generally known to be involved in protein-protein interactions. Within TFIIH p34 strongly interacts with p44, a positive regulator of the helicase XPD. Putative protein-protein interfaces are analyzed and possible binding sites for the p34-p44 interaction suggested.}, language = {en} } @phdthesis{Shkumatov2011, author = {Shkumatov, Alexander V.}, title = {Methods for hybrid modeling of solution scattering data and their application}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65044}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Small-angle X-ray scattering (SAXS) is a universal low-resolution method to study proteins in solution and to analyze structural changes in response to variations of conditions (pH, temperature, ionic strength etc). SAXS is hardly limited by the particle size, being applicable to the smallest proteins and to huge macromolecular machines like ribosomes and viruses. SAXS experiments are usually fast and require a moderate amount of purified material. Traditionally, SAXS is employed to study the size and shape of globular proteins, but recent developments have made it possible to quantitatively characterize the structure and structural transitions of metastable systems, e.g. partially or completely unfolded proteins. In the absence of complementary information, low-resolution macromolecular shapes can be reconstructed ab initio and overall characteristics of the systems can be extracted. If a high or low-resolution structure or a predicted model is available, it can be validated against the experimental SAXS data. If the measured sample is polydisperse, the oligomeric state and/or oligomeric composition in solution can be determined. One of the most important approaches for macromolecular complexes is a combined ab initio/rigid body modeling, when the structures (either complete or partial) of individual subunits are available and SAXS data is employed to build the entire complex. Moreover, this method can be effectively combined with information from other structural, computational and biochemical methods. All the above approaches are covered in a comprehensive program suite ATSAS for SAXS data analysis, which has been developed at the EMBL-Hamburg. In order to meet the growing demands of the structural biology community, methods for SAXS data analysis must be further developed. This thesis describes the development of two new modules, RANLOGS and EM2DAM, which became part of ATSAS suite. The former program can be employed for constructing libraries of linkers and loops de novo and became a part of a combined ab initio/rigid body modeling program CORAL. EM2DAM can be employed to convert electron microscopy maps to bead models, which can be used for modeling or structure validation. Moreover, the programs CRYSOL and CRYSON, for computing X-ray and neutron scattering patterns from atomic models, respectively, were refurbished to work faster and new options were added to them. Two programs, to be contributed to future releases of the ATSAS package, were also developed. The first program generates a large pool of possible models using rigid body modeling program SASREF, selects and refines models with lowest discrepancy to experimental SAXS data using a docking program HADDOCK. The second program refines binary protein-protein complexes using the SAXS data and the high-resolution models of unbound subunits. Some results and conclusions from this work are presented here. The developed approaches detailed in this thesis, together with existing ATSAS modules were additionally employed in a number of collaborative projects. New insights into the "structural memory" of natively unfolded tau protein were gained and supramodular structure of RhoA-specific guanidine nucleotide exchange factor was reconstructed. Moreover, high resolution structures of several hematopoietic cytokine-receptor complexes were validated and re-modeled using the SAXS data. Important information about the oligomeric state of yeast frataxin in solution was derived from the scattering patterns recorded under different conditions and its flexibility was quantitatively characterized using the Ensemble Optimization Method (EOM).}, subject = {R{\"o}ntgen-Kleinwinkelstreuung}, language = {en} } @article{MuellerDieckmannSebaldetal.1994, author = {M{\"u}ller, T. and Dieckmann, T. and Sebald, Walter and Oschkinat, H.}, title = {Aspects of receptor binding and signalling of interleukin-4 investigated by site-directed mutagenesis and NMR spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-62444}, year = {1994}, abstract = {Cytokines are hormones that carry information from ceJI to ceH. This information is read from their surface upon binding to transmembrane receptors and by the subsequent initiation of receptor oligomerization. An inftuence on this process through mutagenesis on the hormone surface is highly desirab)e for medical reasons. However, an understanding of hormone-receptor interactions requires insight into the structural changes introduced by the mutations. In this line structural studies on human TL-4 and the medically important IL-4 antagonists YI24D and Y124G are presented. The site a.round YI24 is an important epitope responsible for the a.bility of 11-4 t.o ca.use a signal in the target cells. It is shown that the local main-chain structure around residue 124 in the variants remains unchanged. A strategy is presented here which allows the study of these types of proteins and their variants by NMR which does not require carbon Iabeiied sa.mples.}, subject = {Biochemie}, language = {en} }