@phdthesis{XavierdeSouza2024, author = {Xavier de Souza, Aline}, title = {Ecophysiological adaptations of the cuticular water permeability within the Solanaceae family}, doi = {10.25972/OPUS-22539}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225395}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {The cuticle, a complex lipidic layer synthesized by epidermal cells, covers and protects primary organs of all land plants. Its main function is to avoid plant desiccation by limiting non-stomatal water loss. The cuticular properties vary widely among plant species. So far, most of the cuticle-related studies have focused on a limited number of species, and studies addressing phylogenetically related plant species are rare. Moreover, comparative studies among organs from the same plant species are still scarce. Thus, this study focus on organ-specificities of the cuticle within and between plant species of the Solanaceae family. Twenty-seven plant species of ten genera, including cultivated and non- cultivated species, were investigated to identify potential cuticular similarities. Structural, chemical and functional traits of fully expanded leaves, inflated fruiting calyces, and ripe fruits were analyzed. The surface morphology was investigated by scanning electron microscopy. Leaves were mainly amphistomatic and covered by an epicuticular wax film. The diversity and distribution of trichomes varied among species. Only the leaves of S. grandiflora were glabrous. Plant species of the Leptostemonum subgenus had numerous prickles and non-glandular stellate trichomes. Fruits were stomata-free, except for S. muricatum, and a wax film covered their surface. Last, lenticel- like structures and remaining scars of broken trichomes were found on the surface of some Solanum fruits. Cuticular water permeability was used as indicators of the cuticular transpiration barrier efficiency. The water permeability differed among plant species, organs and fruit types with values ranging up to one hundred-fold. The minimum leaf conductance ranged from 0.35 × 10-5 m s-1 in S. grandiflora to 31.54 × 10-5 m s-1 in S. muricatum. Cuticular permeability of fruits ranged from 0.64 × 10-5 m s-1 in S. dulcamara (fleshy berry) to 34.98 × 10-5 m s-1 in N. tabacum (capsule). Generally, the cuticular water loss of dry fruits was about to 5-fold higher than that of fleshy fruits. Interestingly, comparisons between cultivated and non-cultivated species showed that wild species have the most efficient cuticular transpiration barrier in leaves and fruits. The average permeability of leaves and fruits of wild plant species was up to three-fold lower in comparison to the cultivated ones. Moreover, ripe fruits of P. ixocarpa and P. peruviana showed two-times lower cuticular transpiration when enclosed by the inflated fruiting calyx. The cuticular chemical composition was examined using gas chromatography. Very-long-chain aliphatic compounds primarily composed the cuticular waxes, being mostly dominated by n- alkanes (up to 80\% of the total wax load). Primary alkanols, alkanoic acids, alkyl esters and branched iso- and anteiso-alkanes were also frequently found. Although in minor amounts, sterols, pentacyclic triterpenoids, phenylmethyl esters, coumaric acid esters, and tocopherols were identified in the cuticular waxes. Cuticular wax coverages highly varied in solanaceous (62- fold variation). The cuticular wax load of fruits ranged from 0.55 μg cm-2 (Nicandra physalodes) to 33.99 μg cm-2 (S. pennellii), whereas the wax amount of leaves varied from 0.90 μg cm-2 (N. physalodes) to 28.42 μg cm-2 (S. burchellii). Finally, the wax load of inflated fruiting calyces ranged from 0.56 μg cm-2 in P. peruviana to 2.00 μg cm-2 in N. physalodes. For the first time, a comparative study on the efficiency of the cuticular transpiration barrier in different plant organs of closely related plant species was conducted. Altogether, the cuticular chemical variability found in solanaceous species highlight species-, and organ-specific wax biosynthesis. These chemical variabilities might relate to the waterproofing properties of the plant cuticle, thereby influencing leaf and fruit performances. Additionally, the high cuticular water permeabilities of cultivated plant species suggest a potential existence of a trade-off between fruit organoleptic properties and the efficiency of the cuticular transpiration barrier. Last, the high cuticular water loss of the solanaceous dry fruits might be a physiological adaptation favouring seed dispersion.}, subject = {Kutikula}, language = {en} } @phdthesis{Stuhlfelder2004, author = {Stuhlfelder, Christiane}, title = {Reinigung, Klonierung und heterologe Expression der Methyljasmonat-Esterase aus Lycopersicon esculentum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8433}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Aus Lycopersicon esculentum Zellsuspensionskulturen konnte ein bisher unbekanntes Enzym isoliert und beschrieben werden, das die Hydrolyse von Methyljasmonat (MeJA) zu Jasmons{\"a}ure (JA) katalysiert. Das Enzym wurde als Methyljasmonat-Esterase (MeJA-Esterase) bezeichnet. Mittels Methyl-[2-14C]JA und [Methyl-3H]MeJA wurden qualitative und quantitative Enzymtestsysteme etabliert, welche die Reinigung und Charakterisierung des Enzyms erlaubten. Methyljasmonat-Esterase Aktivit{\"a}t konnte in 18 taxonomisch unterschiedlichen Zellsuspensionskulturen h{\"o}herer Pflanzen sowie in differenziertem Gewebe (Bl{\"u}te, Wurzel, Stengel und Blatt) von Lycopersicon esculentum cv. Moneymaker nachgewiesen werden. In einem 6-stufigen Reinigungsverfahren wurde das native Enzym mit einer Ausbeute von 2.2 \% bis zur Homogenit{\"a}t 767-fach angereichert. Die native MeJA-Esterase kommt nativ als monomeres 26 kDa großes Protein vor. Unter denaturierenden Bedingungen konnte ein Molekulargewicht von 28 kDa bestimmt werden. Eine Analyse mittels ESI-TOF-Massenspektrometrie ergab ein Molekulargewicht von 28547 Da. Die native MeJA-Esterase hatte ein basisches pH-Optimum von 9.0. Optimale katalytische Aktivit{\"a}t zeigte die MeJA-Esterase bei einer Reaktionstemperatur von 40 \&\#61616;C. Der isoelektrische Punkt lag bei pH 4.7. Eine vollst{\"a}ndige und irreversible Hemmung der MeJA-Esterase konnte durch 5 mM Phenylmethylsulfonylfluorid (PMSF), einem Serinprotease-Inhibitor erzielt werden. Dieses Ergebnis lieferte einen Hinweis darauf, dass die MeJA-Esterase eine katalytische Triade mit einem reaktiven Serin-Rest besitzt. N-Methylmaleimid, Iodacetamid, Bestatin, Pepstatin und Leupeptin konnten die MeJA-Esterase nicht inhibieren. Nach der Reinigung der MeJA-Esterase wurde das Protein partiell mit der Endoproteinase LysC verdaut. Mittels Sequenzierung der Spaltpeptide und N-terminaler Sequenzierung der MeJA-Esterase konnte von vier Peptiden die Sequenz bestimmt werden. Ein Datenbankvergleich (SwissProt und EMBL) dieser Peptide mit bekannten Sequenzen zeigte eine hohe Homologie (bis zu 80 \%) zu verschiedenen Esterasen und \&\#945;-Hydroxynitrillyasen. Die Peptide konnten somit eindeutig als Bestandteile einer Esterase identifiziert werden. Zur Identifizierung des MeJA-Esterase Gens wurden aus den Peptidsequenzen degenerierte Primer abgeleitet und zur weiteren Klonierung verwendet. {\"U}ber eine Reverse Transkription mit anschließender PCR wurde ein internes cDNA-Fragment (513 bp) amplifiziert. Mittels RACE (Rapid Amplification of cDNA Ends) konnten das 5´-und 3´-Ende der MeJA-Esterase cDNA ermittelt werden. Die Nucleotidsequenz umfasste einen offenen Leserahmen von 786 bp. Die davon abgeleitete Aminos{\"a}uresequenz codierte ein offenes Leseraster f{\"u}r ein Protein von 262 Aminos{\"a}uren. Datenbankvergleiche der vollst{\"a}ndigen Aminos{\"a}uresequenz zeigten Homologien von 33 - 47 \% zu Esterasen und \&\#945;-Hydroxynitrillyasen. Die Aminos{\"a}uren der katalytischen Triade, die in den homologen Proteinen hochkonserviert waren, konnten bei der MeJA-Esterase als Serin-83, Asparagins{\"a}ure-211 und Histidin-240 ermittelt werden. Diese drei Aminos{\"a}uren bilden vermutlich das katalytische Zentrum der MeJA-Esterase. Dar{\"u}ber hinaus konnte eine hochkonservierte Signatur, die allen Lipasen gemeinsam ist in der Aminos{\"a}uresequenz der MeJA-Esterase identifziert werden. Diese Ergebnisse erlauben eine Einordnung der MeJA-Esterase in die Superfamilie der „alpha/beta-Fold"-Hydrolasen. Untersuchungen der Prim{\"a}rstruktur der MeJA-Esterase legten den Schluss nahe, dass es sich um ein cytosolisches Enzym handelt. Eine Southern-Blot Analyse mit genomischer DNA aus L. esculentum wurde zur Absch{\"a}tzung der Kopienzahl der zum Protein der MeJA-Esterase korresporendierenden Gene durchgef{\"u}hrt. Dabei wurden zwei bis sieben DNA-Abschnitte ermittelt, die mit der Volll{\"a}nge-Sonde der MeJA-Esterase hybridisierten. Dieses Ergebnis l{\"a}sst vermuten, dass die MeJA-Esterase zu einer Genfamilie geh{\"o}rt. Unklar bleibt jedoch, ob es sich um mehrere homologe Gene handelt, oder ob eine Hybridisierung der Volll{\"a}nge-Sonde mit Pseudogenen erfolgte. Die heterologe Expression der MeJA-Esterase cDNA wurde erfolgreich durchgef{\"u}hrt. Hierdurch wurde der Beweis erbracht werden, dass die klonierte cDNA tats{\"a}chlich f{\"u}r das Gen der MeJA-Esterase codierte. Nach Klonierung der cDNA in den pQE70-Expressionsvektor und Transformation in kompetente E. coli (M15) konnte im Proteinrohextrakt eine spezifische Enzymaktivit{\"a}t von 1.64 pkat/mg detektiert werden. In einem 4-stufigen Reinigungsverfahren wurde das heterolog exprimierte Enzym mit einer Ausbeute von 0.8 \% bis zur Homogenit{\"a}t 283-fach angereichert. Untersuchungen zur Substratspezifit{\"a}t zeigten, dass native und heterolog exprimierte MeJA-Esterase Methyljasmonat zu Jasmons{\"a}ure hydrolysierten. In beiden F{\"a}llen handelte es sich jedoch um kein hochspezifisches Enzym. F{\"u}r die native MeJA-Esterase konnte ein KM-Wert von 14.7 ± 0.8 µM und f{\"u}r die heterolog exprimierte MeJA-Esterase ein KM-Wert von 24.3 ± 2.3 µM ermittelt werden.}, subject = {Tomate}, language = {de} }