@article{SbirkovKwokBhamraetal.2017, author = {Sbirkov, Yordan and Kwok, Colin and Bhamra, Amandeep and Thompson, Andrew J. and Gil, Veronica and Zelent, Arthur and Petrie, Kevin}, title = {Semi-quantitative mass spectrometry in AML cells identifies new non-genomic targets of the EZH2 methyltransferase}, series = {International Journal of Molecular Sciences}, volume = {18}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms18071440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285541}, year = {2017}, abstract = {Alterations to the gene encoding the EZH2 (KMT6A) methyltransferase, including both gain-of-function and loss-of-function, have been linked to a variety of haematological malignancies and solid tumours, suggesting a complex, context-dependent role of this methyltransferase. The successful implementation of molecularly targeted therapies against EZH2 requires a greater understanding of the potential mechanisms by which EZH2 contributes to cancer. One aspect of this effort is the mapping of EZH2 partner proteins and cellular targets. To this end we performed affinity-purification mass spectrometry in the FAB-M2 HL-60 acute myeloid leukaemia (AML) cell line before and after all-trans retinoic acid-induced differentiation. These studies identified new EZH2 interaction partners and potential non-histone substrates for EZH2-mediated methylation. Our results suggest that EZH2 is involved in the regulation of translation through interactions with a number of RNA binding proteins and by methylating key components of protein synthesis such as eEF1A1. Given that deregulated mRNA translation is a frequent feature of cancer and that eEF1A1 is highly expressed in many human tumours, these findings present new possibilities for the therapeutic targeting of EZH2 in AML.}, language = {en} } @article{GaritanoTrojaolaSanchoGoetzetal.2021, author = {Garitano-Trojaola, Andoni and Sancho, Ana and G{\"o}tz, Ralph and Eiring, Patrick and Walz, Susanne and Jetani, Hardikkumar and Gil-Pulido, Jesus and Da Via, Matteo Claudio and Teufel, Eva and Rhodes, Nadine and Haertle, Larissa and Arellano-Viera, Estibaliz and Tibes, Raoul and Rosenwald, Andreas and Rasche, Leo and Hudecek, Michael and Sauer, Markus and Groll, J{\"u}rgen and Einsele, Hermann and Kraus, Sabrina and Kort{\"u}m, Martin K.}, title = {Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-021-02215-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260709}, year = {2021}, abstract = {The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML.}, language = {en} } @phdthesis{Filser2012, author = {Filser, J{\"o}rg}, title = {Mislokalisation von Nup214/CAN auf beiden Seiten des Kernporenkomplexes in akuten myeloischen Leuk{\"a}mien - Eine erstmalige Darstellung des DEK-CAN Fusionsproteins auf der nukleoplasmatischen Seite des Zellkerns}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75977}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Das elementare Kennzeichen der eukaryontischen Zelle ist der Zellkern, in welchem die Erbinformation in Form der DNA vorliegt. Dieser ist von einer {\"a}ußeren Kernh{\"u}lle umgeben, welche kontinuierlich in das endoplasmatische Retikulum {\"u}bergeht. An der inneren Kernh{\"u}lle setzt die Kernlamina an. Unterbrochen wird die Kernh{\"u}lle durch die Kernporen. Diese bestehen aus Untereinheiten, welche als Nukleoporine bezeichnet werden. Eine wesentliche Aufgabe der Kernporen ist der Transport von Makromolek{\"u}len, welche durch spezifische Transportsignalsequenzen gekennzeichnet sind. Es mehren sich die Hinweise, dass die Nukleoporine nicht allein f{\"u}r den Kerntransport verantwortlich sind, sondern auch regulatorische Eigenschaften bei Mitose, der Expression von Proteinen und der Stabilisierung des Genoms {\"u}bernehmen. Nach der Entdeckung der Philadelphia Translokation bei der chronisch myeloischen Leuk{\"a}mie wurden eine Reihe weiterer chromosomaler Translokationen im Rahmen von h{\"a}matologischen Neoplasien beschrieben. Hierbei sind auch Nukleoporine involviert. Es entstehen Fusionsproteine, welche ein neues Verteilungsmuster der Proteine erzeugen und m{\"o}glicherweise auch neue Funktionen innehaben. Nup214/CAN ist ein Onkogen, welches in akuten myeloischen Leuk{\"a}mien mit einer chromosomalen Translokation einhergeht t(6;9). Diese Translokation t(6;9) ist mit einer schlechteren Prognose f{\"u}r den Patienten verbunden. Der genaue onkogene Mechanismus ist noch nicht ausreichend verstanden. Ziel dieser Doktorarbeit war die Frage, welches Verteilungsmuster Nup214 als Fusionsprotein mit einer ver{\"a}nderten NLS in Leuk{\"a}miezellen der chromosomalen Translokation t(6;9) aufweist, zu beantworten. Zu diesem Zweck wurden die Fusionsproteinfragmente DEK, CAN Mitte und CAN 80/81 in E. coli exprimiert, aufgereinigt und der Herstellung eines spezifischen Antik{\"o}rpers zugef{\"u}hrt. Hierzu wurden die mit den Proteinfragmenten transfizierten E. coli amplifiziert. Nach Lyse der Zellen wurden die Proteinfragmente elektrophoretisch getrennt und den ermittelten Molekulargewichten zugeordnet. Mit Hilfe einer Affinit{\"a}tschromatographie und einem Proteintransfer auf Nitrozellulosemembran wurde mit polyvalentem Serum eine Affinit{\"a}tsreinigung des Antik{\"o}rpers durchgef{\"u}hrt. Dadurch konnten spezifische Antik{\"o}rper generiert werden, welche in der Immunfloureszenz die physiologischen Verteilungsmuster zeigten. In einem nachfolgenden Schritt konnte in Kooperation mit dem Biologischen Institut Basel mittels Immuno-Gold-Lokalisation von Nup214/CAN in Leuk{\"a}miezellen mit einer chromosomalen Translokation t(6;9) erstmalig die Lokalisation des Proteins auf zytoplasmatischer und nukleoplasmatischer Seite einer Kernpore gezeigt werden. Dies legt die Vermutung nahe, dass es durch diese Mislokalisation zu einer St{\"o}rung des nukle{\"a}ren Transports kommen kann, der wiederum zu einem Wachstumsvorteil oder einer Inhibition der Apoptose der Leuk{\"a}miezellen f{\"u}hrt.}, subject = {Kernpore}, language = {de} }