@article{WoersdoerferErguen2023, author = {W{\"o}rsd{\"o}rfer, Philipp and Erg{\"u}n, S{\"u}leyman}, title = {"Organoids": insights from the first issues}, series = {Organoids}, volume = {2}, journal = {Organoids}, number = {2}, issn = {2674-1172}, doi = {10.3390/organoids2020006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313694}, pages = {79 -- 81}, year = {2023}, abstract = {No abstract available}, language = {en} } @article{CapetianMuellerVolkmannetal.2020, author = {Capetian, Philipp and M{\"u}ller, Lorenz and Volkmann, Jens and Heckmann, Manfred and Erg{\"u}n, S{\"u}leyman and Wagner, Nicole}, title = {Visualizing the synaptic and cellular ultrastructure in neurons differentiated from human induced neural stem cells - an optimized protocol}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {5}, issn = {1422-0067}, doi = {10.3390/ijms21051708}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236053}, year = {2020}, abstract = {The size of the synaptic subcomponents falls below the limits of visible light microscopy. Despite new developments in advanced microscopy techniques, the resolution of transmission electron microscopy (TEM) remains unsurpassed. The requirements of tissue preservation are very high, and human post mortem material often does not offer adequate quality. However, new reprogramming techniques that generate human neurons in vitro provide samples that can easily fulfill these requirements. The objective of this study was to identify the culture technique with the best ultrastructural preservation in combination with the best embedding and contrasting technique for visualizing neuronal elements. Two induced neural stem cell lines derived from healthy control subjects underwent differentiation either adherent on glass coverslips, embedded in a droplet of highly concentrated Matrigel, or as a compact neurosphere. Afterward, they were fixed using a combination of glutaraldehyde (GA) and paraformaldehyde (PFA) followed by three approaches (standard stain, Ruthenium red stain, high contrast en-bloc stain) using different combinations of membrane enhancing and contrasting steps before ultrathin sectioning and imaging by TEM. The compact free-floating neurospheres exhibited the best ultrastructural preservation. High-contrast en-bloc stain offered particularly sharp staining of membrane structures and the highest quality visualization of neuronal structures. In conclusion, compact neurospheres growing under free-floating conditions in combination with a high contrast en-bloc staining protocol, offer the optimal preservation and contrast with a particular focus on visualizing membrane structures as required for analyzing synaptic structures.}, language = {en} } @phdthesis{Elsner2022, author = {Elsner, Clara Dorothea}, title = {Ultrastructural analysis of biogenesis and release of endothelial extracellular vesicles}, doi = {10.25972/OPUS-28852}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288526}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Extracellular vesicle (EV)-mediated intercellular communication through exosomes, microvesicles (MVs) and apoptotic bodies has been shown to be implicated in various physiological as well as pathological processes such as the development and progression of atherosclerosis. While the cellular machinery controlling EV formation and composition has been studied extensively, little is known about the underlying morphological processes. This study focuses on a detailed ultrastructural analysis of the different steps of EV formation and release in Myocardial Endothelial (MyEnd) and Aortic Endothelial (AoEnd) cells cultured under serum starvation and inflammatory stimulation with TNF-α. Detailed morphological analyses were conducted applying and comparing different high- resolution light and electron microscopic methods. In this study, we could depict all steps of MV biogenesis named in literature. However, during the study of exosome biogenesis, we discovered a yet undescribed process: Instead of a direct fusion with the plasma membrane, multivesicular bodies were incorporated into a new distinct cellular compartment bound by fenestrated endothelium first. This may present a novel step in exosome biogenesis and warrants further study. Regarding the conditions of cell cultivation, we observed that the commonly used serum starvation causes MyEnd cells, but not AoEnd cells, to enter apoptosis after 48 hours. When preparing functional EV studies, we therefore recommend assessing the morphological condition of the serum-starved cells at different cultivation points first. When evaluating MV production, a statistical analysis showed that the more time AoEnd cells spent in cultivation under serum starvation, the higher the percentage of MV producing cells. However, additional TNF-α stimulation induced a significantly higher MV production than serum starvation alone. Lastly, our results show that TNF-α stimulation of AoEnd cells in vitro leads to the upregulation of CD44, an adhesion molecule critical in the early stages of atherosclerosis. CD44 was then depicted on the surface of generated MVs and exosomes. We conclude that under inflammatory conditions, EVs can mediate the transfer of CD44 from endothelial cells to target cells. This could be a novel mechanism by which MVs contribute to the development and progression of atherosclerotic disease and should be clarified by further studies.}, subject = {Vesikel}, language = {en} } @article{PatzerKunzHuflageetal.2023, author = {Patzer, Theresa Sophie and Kunz, Andreas Steven and Huflage, Henner and Conrads, Nora and Luetkens, Karsten Sebastian and Pannenbecker, Pauline and Paul, Mila Marie and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Ultrahigh-resolution photon-counting CT in cadaveric fracture models: spatial frequency is not everything}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {10}, issn = {2075-4418}, doi = {10.3390/diagnostics13101677}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319281}, year = {2023}, abstract = {In this study, the impact of reconstruction sharpness on the visualization of the appendicular skeleton in ultrahigh-resolution (UHR) photon-counting detector (PCD) CT was investigated. Sixteen cadaveric extremities (eight fractured) were examined with a standardized 120 kVp scan protocol (CTDI\(_{vol}\) 10 mGy). Images were reconstructed with the sharpest non-UHR kernel (Br76) and all available UHR kernels (Br80 to Br96). Seven radiologists evaluated image quality and fracture assessability. Interrater agreement was assessed with the intraclass correlation coefficient. For quantitative comparisons, signal-to-noise-ratios (SNRs) were calculated. Subjective image quality was best for Br84 (median 1, interquartile range 1-3; p ≤ 0.003). Regarding fracture assessability, no significant difference was ascertained between Br76, Br80 and Br84 (p > 0.999), with inferior ratings for all sharper kernels (p < 0.001). Interrater agreement for image quality (0.795, 0.732-0.848; p < 0.001) and fracture assessability (0.880; 0.842-0.911; p < 0.001) was good. SNR was highest for Br76 (3.4, 3.0-3.9) with no significant difference to Br80 and Br84 (p > 0.999). Br76 and Br80 produced higher SNRs than all kernels sharper than Br84 (p ≤ 0.026). In conclusion, PCD-CT reconstructions with a moderate UHR kernel offer superior image quality for visualizing the appendicular skeleton. Fracture assessability benefits from sharp non-UHR and moderate UHR kernels, while ultra-sharp reconstructions incur augmented image noise.}, language = {en} } @article{SchreiberLohrBaltesetal.2023, author = {Schreiber, Laura M. and Lohr, David and Baltes, Steffen and Vogel, Ulrich and Elabyad, Ibrahim A. and Bille, Maya and Reiter, Theresa and Kosmala, Aleksander and Gassenmaier, Tobias and Stefanescu, Maria R. and Kollmann, Alena and Aures, Julia and Schnitter, Florian and Pali, Mihaela and Ueda, Yuichiro and Williams, Tatiana and Christa, Martin and Hofmann, Ulrich and Bauer, Wolfgang and Gerull, Brenda and Zernecke, Alma and Erg{\"u}n, S{\"u}leyman and Terekhov, Maxim}, title = {Ultra-high field cardiac MRI in large animals and humans for translational cardiovascular research}, series = {Frontiers in Cardiovascular Medicine}, volume = {10}, journal = {Frontiers in Cardiovascular Medicine}, issn = {2297-055X}, doi = {10.3389/fcvm.2023.1068390}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-317398}, year = {2023}, abstract = {A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.}, language = {en} } @article{MuturiDreesenNilewskietal.2013, author = {Muturi, Harrison T. and Dreesen, Janine D. and Nilewski, Elena and Jastrow, Holger and Giebel, Bernd and Ergun, Suleyman and Singer, Berhard B.}, title = {Tumor and Endothelial Cell-Derived Microvesicles Carry Distinct CEACAMs and Influence T-Cell Behavior}, series = {PLOS ONE}, volume = {8}, journal = {PLOS ONE}, number = {9}, issn = {1932-6203}, doi = {10.1371/journal.pone.0074654}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128373}, pages = {e74654}, year = {2013}, abstract = {Normal and malignant cells release a variety of different vesicles into their extracellular environment. The most prominent vesicles are the microvesicles (MVs, 100-1 000 nm in diameter), which are shed of the plasma membrane, and the exosomes (70-120 nm in diameter), derivates of the endosomal system. MVs have been associated with intercellular communication processes and transport numerous proteins, lipids and RNAs. As essential component of immune-escape mechanisms tumor-derived MVs suppress immune responses. Additionally, tumor-derived MVs have been found to promote metastasis, tumor-stroma interactions and angiogenesis. Since members of the carcinoembryonic antigen related cell adhesion molecule (CEACAM)-family have been associated with similar processes, we studied the distribution and function of CEACAMs in MV fractions of different human epithelial tumor cells and of human and murine endothelial cells. Here we demonstrate that in association to their cell surface phenotype, MVs released from different human epithelial tumor cells contain CEACAM1, CEACAM5 and CEACAM6, while human and murine endothelial cells were positive for CEACAM1 only. Furthermore, MVs derived from CEACAM1 transfected CHO cells carried CEACAM1. In terms of their secretion kinetics, we show that MVs are permanently released in low doses, which are extensively increased upon cellular starvation stress. Although CEACAM1 did not transmit signals into MVs it served as ligand for CEACAM expressing cell types. We gained evidence that CEACAM1-positive MVs significantly increase the CD3 and CD3/CD28-induced T-cell proliferation. All together, our data demonstrate that MV-bound forms of CEACAMs play important roles in intercellular communication processes, which can modulate immune response, tumor progression, metastasis and angiogenesis.}, language = {en} } @article{BielmeierRothSchmittetal.2021, author = {Bielmeier, Christina B. and Roth, Saskia and Schmitt, Sabrina I. and Boneva, Stefaniya K. and Schlecht, Anja and Vallon, Mario and Tamm, Ernst R. and Erg{\"u}n, S{\"u}leyman and Neueder, Andreas and Braunger, Barbara M.}, title = {Transcriptional profiling identifies upregulation of neuroprotective pathways in retinitis pigmentosa}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {12}, issn = {1422-0067}, doi = {10.3390/ijms22126307}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260769}, year = {2021}, abstract = {Hereditary retinal degenerations like retinitis pigmentosa (RP) are among the leading causes of blindness in younger patients. To enable in vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death and to allow testing of therapeutic strategies that could prevent retinal degeneration, animal models have been created. In this study, we deeply characterized the transcriptional profile of mice carrying the transgene rhodopsin V20G/P23H/P27L (VPP), which is a model for autosomal dominant RP. We examined the degree of photoreceptor degeneration and studied the impact of the VPP transgene-induced retinal degeneration on the transcriptome level of the retina using next generation RNA sequencing (RNASeq) analyses followed by weighted correlation network analysis (WGCNA). We furthermore identified cellular subpopulations responsible for some of the observed dysregulations using in situ hybridizations, immunofluorescence staining, and 3D reconstruction. Using RNASeq analysis, we identified 9256 dysregulated genes and six significantly associated gene modules in the subsequently performed WGCNA. Gene ontology enrichment showed, among others, dysregulation of genes involved in TGF-β regulated extracellular matrix organization, the (ocular) immune system/response, and cellular homeostasis. Moreover, heatmaps confirmed clustering of significantly dysregulated genes coding for components of the TGF-β, G-protein activated, and VEGF signaling pathway. 3D reconstructions of immunostained/in situ hybridized sections revealed retinal neurons and M{\"u}ller cells as the major cellular population expressing representative components of these signaling pathways. The predominant effect of VPP-induced photoreceptor degeneration pointed towards induction of neuroinflammation and the upregulation of neuroprotective pathways like TGF-β, G-protein activated, and VEGF signaling. Thus, modulation of these processes and signaling pathways might represent new therapeutic options to delay the degeneration of photoreceptors in diseases like RP.}, language = {en} } @article{SchlechtWolfBonevaetal.2022, author = {Schlecht, Anja and Wolf, Julian and Boneva, Stefaniya and Prinz, Gabriele and Braunger, Barbara M. and Wieghofer, Peter and Agostini, Hansj{\"u}rgen and Schlunck, G{\"u}nther and Lange, Clemens}, title = {Transcriptional and distributional profiling of microglia in retinal angiomatous proliferation}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms23073443}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284072}, year = {2022}, abstract = {Macular neovascularization type 3, formerly known as retinal angiomatous proliferation (RAP), is a hallmark of age-related macular degeneration and is associated with an accumulation of myeloid cells, such as microglia (MG) and infiltrating blood-derived macrophages (MAC). However, the contribution of MG and MAC to the myeloid cell pool at RAP sites and their exact functions remain unknown. In this study, we combined a microglia-specific reporter mouse line with a mouse model for RAP to identify the contribution of MG and MAC to myeloid cell accumulation at RAP and determined the transcriptional profile of MG using RNA sequencing. We found that MG are the most abundant myeloid cell population around RAP, whereas MAC are rarely, if ever, associated with late stages of RAP. RNA sequencing of RAP-associated MG showed that differentially expressed genes mainly contribute to immune-associated processes, including chemotaxis and migration in early RAP and proliferative capacity in late RAP, which was confirmed by immunohistochemistry. Interestingly, MG upregulated only a few angiomodulatory factors, suggesting a rather low angiogenic potential. In summary, we showed that MG are the dominant myeloid cell population at RAP sites. Moreover, MG significantly altered their transcriptional profile during RAP formation, activating immune-associated processes and exhibiting enhanced proliferation, however, without showing substantial upregulation of angiomodulatory factors.}, language = {en} } @article{JordanJaeckleScheidtetal.2021, author = {Jordan, Martin C. and J{\"a}ckle, Veronika and Scheidt, Sebastian and Gilbert, Fabian and H{\"o}lscher-Doht, Stefanie and Erg{\"u}n, S{\"u}leyman and Meffert, Rainer H. and Heintel, Timo M.}, title = {Trans-obturator cable fixation of open book pelvic injuries}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-92755-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261212}, year = {2021}, abstract = {Operative treatment of ruptured pubic symphysis by plating is often accompanied by complications. Trans-obturator cable fixation might be a more reliable technique; however, have not yet been tested for stabilization of ruptured pubic symphysis. This study compares symphyseal trans-obturator cable fixation versus plating through biomechanical testing and evaluates safety in a cadaver experiment. APC type II injuries were generated in synthetic pelvic models and subsequently separated into three different groups. The anterior pelvic ring was fixed using a four-hole steel plate in Group A, a stainless steel cable in Group B, and a titan band in Group C. Biomechanical testing was conducted by a single-leg-stance model using a material testing machine under physiological load levels. A cadaver study was carried out to analyze the trans-obturator surgical approach. Peak-to-peak displacement, total displacement, plastic deformation and stiffness revealed a tendency for higher stability for trans-obturator cable/band fixation but no statistical difference to plating was detected. The cadaver study revealed a safe zone for cable passage with sufficient distance to the obturator canal. Trans-obturator cable fixation has the potential to become an alternative for symphyseal fixation with less complications.}, language = {en} } @article{HollenhorstJurastowNandigamaetal.2020, author = {Hollenhorst, Monika I. and Jurastow, Innokentij and Nandigama, Rajender and Appenzeller, Silke and Li, Lei and Vogel, J{\"o}rg and Wiederhold, Stephanie and Althaus, Mike and Empting, Martin and Altm{\"u}ller, Janine and Hirsch, Anna K. H. and Flockerzi, Veit and Canning, Brendan J. and Saliba, Antoine-Emmanuel and Krasteva-Christ, Gabriela}, title = {Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling}, series = {The FASEB Journal}, volume = {34}, journal = {The FASEB Journal}, number = {1}, doi = {10.1096/fj.201901314RR}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213516}, pages = {316 -- 332}, year = {2020}, abstract = {For protection from inhaled pathogens many strategies have evolved in the airways such as mucociliary clearance and cough. We have previously shown that protective respiratory reflexes to locally released bacterial bitter "taste" substances are most probably initiated by tracheal brush cells (BC). Our single-cell RNA-seq analysis of murine BC revealed high expression levels of cholinergic and bitter taste signaling transcripts (Tas2r108, Gnat3, Trpm5). We directly demonstrate the secretion of acetylcholine (ACh) from BC upon stimulation with the Tas2R agonist denatonium. Inhibition of the taste transduction cascade abolished the increase in [Ca\(^{2+}\)]\(_{i}\) in BC and subsequent ACh-release. ACh-release is regulated in an autocrine manner. While the muscarinic ACh-receptors M3R and M1R are activating, M2R is inhibitory. Paracrine effects of ACh released in response to denatonium included increased [Ca\(^{2+}\)]\(_{i}\) in ciliated cells. Stimulation by denatonium or with Pseudomonas quinolone signaling molecules led to an increase in mucociliary clearance in explanted tracheae that was Trpm5- and M3R-mediated. We show that ACh-release from BC via the bitter taste cascade leads to immediate paracrine protective responses that can be boosted in an autocrine manner. This mechanism represents the initial step for the activation of innate immune responses against pathogens in the airways.}, language = {en} } @article{PrinzKaraciviStormannsetal.2015, author = {Prinz, Johanna and Karacivi, Aylin and Stormanns, Eva R. and Recks, Masha S. and K{\"u}rten, Stefanie}, title = {Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis}, series = {PloS One}, volume = {10}, journal = {PloS One}, number = {12}, doi = {10.1371/journal.pone.0144847}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146651}, pages = {e0144847}, year = {2015}, abstract = {Background Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination and axonal pathology. Myelin basic protein/proteolipid protein (MBP-PLP) fusion protein MP4 is capable of inducing chronic experimental autoimmune encephalomyelitis (EAE) in susceptible mouse strains mirroring diverse histopathological and immunological hallmarks of MS. Limited availability of human tissue underscores the importance of animal models to study the pathology of MS. Methods Twenty-two female C57BL/6 (B6) mice were immunized with MP4 and the clinical development of experimental autoimmune encephalomyelitis (EAE) was observed. Methylene blue-stained semi-thin and ultra-thin sections of the lumbar spinal cord were assessed at the peak of acute EAE, three months (chronic EAE) and six months after onset of EAE (long-term EAE). The extent of lesional area and inflammation were analyzed in semi-thin sections on a light microscopic level. The magnitude of demyelination and axonal damage were determined using electron microscopy. Emphasis was put on the ventrolateral tract (VLT) of the spinal cord. Results B6 mice demonstrated increasing demyelination and severe axonal pathology in the course of MP4-induced EAE. In addition, mitochondrial swelling and a decrease in the nearest neighbor neurofilament distance (NNND) as early signs of axonal damage were evident with the onset of EAE. In semi-thin sections we observed the maximum of lesional area in the chronic state of EAE while inflammation was found to a similar extent in acute and chronic EAE. In contrast to the well-established myelin oligodendrocyte glycoprotein (MOG) model, disease stages of MP4-induced EAE could not be distinguished by assessing the extent of parenchymal edema or the grade of inflammation. Conclusions Our results complement our previous ultrastructural studies of B6 EAE models and suggest that B6 mice immunized with different antigens constitute useful instruments to study the diverse histopathological aspects of MS.}, language = {en} } @article{RudertHorasHobergetal.2016, author = {Rudert, Maximilian and Horas, Konstantin and Hoberg, Maik and Steinert, Andre and Holzapfel, Dominik Emanuel and H{\"u}bner, Stefan and Holzapfel, Boris Michael}, title = {The Wuerzburg procedure: the tensor fasciae latae perforator is a reliable anatomical landmark to clearly identify the Hueter interval when using the minimally-invasive direct anterior approach to the hip joint}, series = {BMC Musculoskeletal Disorders}, volume = {17}, journal = {BMC Musculoskeletal Disorders}, number = {57}, doi = {10.1186/s12891-016-0908-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146031}, year = {2016}, abstract = {Background The key for successful delivery in minimally-invasive hip replacement lies in the exact knowledge about the surgical anatomy. The minimally-invasive direct anterior approach to the hip joint makes it necessary to clearly identify the tensor fasciae latae muscle in order to enter the Hueter interval without damaging the lateral femoral cutaneous nerve. However, due to the inherently restricted overview in minimally-invasive surgery, this can be difficult even for experienced surgeons. Methods and Surgical Technique In this technical note, we demonstrate for the first time how to use the tensor fasciae latae perforator as anatomical landmark to reliably identify the tensor fasciae latae muscle in orthopaedic surgery. Such perforators are used for flaps in plastic surgery as they are constant and can be found at the lateral third of the tensor fasciae latae muscle in a direct line from the anterior superior iliac spine. Conclusion As demonstrated in this article, a simple knowledge transfer between surgical disciplines can minimize the complication rate associated with minimally-invasive hip replacement.}, language = {en} } @article{GorboulevKutateladzeBarciszewskietal.1977, author = {Gorboulev, Valentin G. and Kutateladze, Tamara V. and Barciszewski, Jan and Axelrod, Vladimir D.}, title = {The separation of oligonucleotides of baker's yeast valine transfer ribonucleic acid 2b by high-voltage electrophoresis on DEAE-paper and by thin-layer chromatography}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32536}, year = {1977}, abstract = {No abstract available}, language = {en} } @article{GoetzRueckschlossBalketal.2023, author = {G{\"o}tz, Lisa and Rueckschloss, Uwe and Balk, G{\"o}zde and Pfeiffer, Verena and Erg{\"u}n, S{\"u}leyman and Kleefeldt, Florian}, title = {The role of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1295232}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357250}, year = {2023}, abstract = {The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. CEACAM1 was shown to be a prognostic marker in patients suffering from cancer. In this review, we summarize pre-clinical and clinical evidence linking CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss potential CEACAM1-based mechanisms that may affect cancer biology.}, language = {en} } @article{ShityakovNagaiErguenetal.2022, author = {Shityakov, Sergey and Nagai, Michiaki and Erg{\"u}n, S{\"u}leyman and Braunger, Barbara M. and F{\"o}rster, Carola Y.}, title = {The protective effects of neurotrophins and microRNA in diabetic retinopathy, nephropathy and heart failure via regulating endothelial function}, series = {Biomolecules}, volume = {12}, journal = {Biomolecules}, number = {8}, issn = {2218-273X}, doi = {10.3390/biom12081113}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285966}, year = {2022}, abstract = {Diabetes mellitus is a common disease affecting more than 537 million adults worldwide. The microvascular complications that occur during the course of the disease are widespread and affect a variety of organ systems in the body. Diabetic retinopathy is one of the most common long-term complications, which include, amongst others, endothelial dysfunction, and thus, alterations in the blood-retinal barrier (BRB). This particularly restrictive physiological barrier is important for maintaining the neuroretina as a privileged site in the body by controlling the inflow and outflow of fluid, nutrients, metabolic end products, ions, and proteins. In addition, people with diabetic retinopathy (DR) have been shown to be at increased risk for systemic vascular complications, including subclinical and clinical stroke, coronary heart disease, heart failure, and nephropathy. DR is, therefore, considered an independent predictor of heart failure. In the present review, the effects of diabetes on the retina, heart, and kidneys are described. In addition, a putative common microRNA signature in diabetic retinopathy, nephropathy, and heart failure is discussed, which may be used in the future as a biomarker to better monitor disease progression. Finally, the use of miRNA, targeted neurotrophin delivery, and nanoparticles as novel therapeutic strategies is highlighted.}, language = {en} } @inproceedings{AxelrodGorboulevKutateladzeetal.1976, author = {Axelrod, V. D. and Gorboulev, Valentin G. and Kutateladze, T. V. and Barciszewski, J. and Bayev, A. A.}, title = {The new approach to tRNA primary structure determination : the primary structure of valine tRNA\(^{Val}_{2b}\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-50920}, year = {1976}, abstract = {The new combination of TLC and high voltage electrophoresis on cooling plate is described.We have applied this technique to study of primary structure of tRNA.Preliminary sequence of baker's yeast tRNA^Val_2b is described. New approach to preparation of large tRNA fragments is demonstrated.}, subject = {RNS}, language = {en} } @article{JaschkeChungHesseetal.2012, author = {Jaschke, Alexander and Chung, Bomee and Hesse, Deike and Kluge, Reinhart and Zahn, Claudia and Moser, Markus and Petzke, Klaus-J{\"u}rgen and Brigelius-Floh{\´e}, Regina and Puchkov, Dmytro and Koepsell, Hermann and Heeren, Joerg and Joost, Hans-Georg and Sch{\"u}rmann, Annette}, title = {The GTPase ARFRP1 controls the lipidation of chylomicrons in the Golgi of the intestinal epithelium}, series = {Human Molecular Genetics}, volume = {21}, journal = {Human Molecular Genetics}, number = {14}, doi = {10.1093/hmg/dds140}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125658}, pages = {3128-3142}, year = {2012}, abstract = {The uptake and processing of dietary lipids by the small intestine is a multistep process that involves several steps including vesicular and protein transport. The GTPase ADP-ribosylation factor-related protein 1 (ARFRP1) controls the ARF-like 1 (ARL1)-mediated Golgi recruitment of GRIP domain proteins which in turn bind several Rab-GTPases. Here, we describe the essential role of ARFRP1 and its interaction with Rab2 in the assembly and lipidation of chylomicrons in the intestinal epithelium. Mice lacking Arfrp1 specifically in the intestine \((Arfrp1^{vil-/-})\) exhibit an early post-natal growth retardation with reduced plasma triacylglycerol and free fatty acid concentrations. \(Arfrp1^{vil-/-}\) enterocytes as well as Arfrp1 mRNA depleted Caco-2 cells absorbed fatty acids normally but secreted chylomicrons with a markedly reduced triacylglycerol content. In addition, the release of apolipoprotein A-I (ApoA-I) was dramatically decreased, and ApoA-I accumulated in the \(Arfrp1^{vil-/-}\) epithelium, where it predominantly co-localized with Rab2. The release of chylomicrons from Caco-2 was markedly reduced after the suppression of Rab2, ARL1 and Golgin-245. Thus, the GTPase ARFRP1 and its downstream proteins are required for the lipidation of chylo­microns and the assembly of ApoA-I to these particles in the Golgi of intestinal epithelial cells.}, language = {en} } @article{Zonneveld2019, author = {Zonneveld, Ben J. M.}, title = {The DNA weights per nucleus (genome size) of more than 2350 species of the Flora of The Netherlands, of which 1370 are new to science, including the pattern of their DNA peaks}, series = {Forum Geobotanicum}, volume = {8}, journal = {Forum Geobotanicum}, issn = {1867-9315}, doi = {10.3264/FG.2019.1022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189724}, pages = {24-78}, year = {2019}, abstract = {Besides external characteristics and reading a piece of DNA (barcode), the DNA weight per nucleus (genome size) via flow cytometry is a key value to detect species and hybrids and determine ploidy. In addition, the DNA weight appears to be related to various properties, such as the size of the cell and the nucleus, the duration of mitosis and meiosis and the generation time. Sometimes it is even possible to distinguish between groups or sections, which can lead to new classification of the genera. The variation in DNA weight is also useful to analyze biodiversity, genome evolution and relationships between related taxa. Moreover, it is important to know how large a genome is before one determines the base sequence of the DNA of a plant. Flow cytometry is also important for understanding fundamental processes in plants such as growth and development and recognizing chimeras. In the literature, DNA weight measurements are usually limited to one genus and often only locally (Siljak et al. 2010; Bai et al. 2012). In this study, however, it was decided to investigate all vascular plants from one country. This can also contribute to the protection of rare plants. This study is the first flora in the world whose weight of DNA per nucleus and peak patterns has been determined. More than 6400 plants, representing more than 2350 (sub)species (more than 90\%) have been collected, thanks to the help of almost 100 volunteers of Floristisch Onderzoek Nederland (Floron). Multiple specimens of many species have therefore been measured, preferably from different populations, in some cases more than fifty. For 1370 species, these values were not previously published. Moreover, a good number of the remaining 45\% are new for The Netherlands. In principle, each species has a fixed weight of DNA per nucleus. It has also been found that, especially between the genera, there are strong differences in the number of peaks that determine the DNA weight, from one to five peaks. This indicates that in a plant or organ there are sometimes nuclei with multiples of its standard DNA weight (multiple ploidy levels). It is impossible to show graphs of more than 2350 species. Therefore, we have chosen to show the peak pattern in a new way in a short formula. Within most genera there are clear differences in the DNA weights per nucleus between the species, in some other genera the DNA weight is hardly variable. Based on about twenty genera that were previously measured completely in most cases ('t Hart et al. 2003: Veldkamp and Zonneveld 2011; Soes et al. 2012; Dirkse et al. 2014, 2015; Verloove et al. 2017; Zonneveld [et al.] 2000-2018), it can be noted that even if all species of a genus have the same number of chromosomes, there can still be a difference of up to three times in the weight of the DNA. Therefore, a twice larger DNA weight does not have to indicate four sets of chromosomes. Finally, this research has also found clues to examine further the current taxonomy of a number of species or genera.}, subject = {Pflanzen}, language = {en} } @article{WunschHohmannMillesetal.2016, author = {Wunsch, Marie and Hohmann, Christopher and Milles, Bianca and Rostermund, Christina and Lehmann, Paul V. and Schroeter, Michael and Bayas, Antonios and Ulzheimer, Jochen and M{\"a}urer, Mathias and Erg{\"u}n, S{\"u}leyman and Kuerten, Stefanie}, title = {The Correlation between the Virus- and Brain Antigen-Specific B Cell Response in the Blood of Patients with Multiple Sclerosis}, series = {Viruses}, volume = {8}, journal = {Viruses}, number = {4}, doi = {10.3390/v8040105}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146946}, pages = {105}, year = {2016}, abstract = {There is a largely divergent body of literature regarding the relationship between Epstein-Barr virus (EBV) infection and brain inflammation in multiple sclerosis (MS). Here, we tested MS patients during relapse (n = 11) and in remission (n = 19) in addition to n = 22 healthy controls to study the correlation between the EBV- and brain-specific B cell response in the blood by enzyme-linked immunospot (ELISPOT) and enzyme-linked immunosorbent assay (ELISA). Cytomegalovirus (CMV) was used as a control antigen tested in n = 16 MS patients during relapse and in n = 35 patients in remission. Over the course of the study, n = 16 patients were untreated, while n = 33 patients received immunomodulatory therapy. The data show that there was a moderate correlation between the frequencies of EBV- and brain-reactive B cells in MS patients in remission. In addition we could detect a correlation between the B cell response to EBV and disease activity. There was no evidence of an EBV reactivation. Interestingly, there was also a correlation between the frequencies of CMV- and brain-specific B cells in MS patients experiencing an acute relapse and an elevated B cell response to CMV was associated with higher disease activity. The trend remained when excluding seronegative subjects but was non-significant. These data underline that viral infections might impact the immunopathology of MS, but the exact link between the two entities remains subject of controversy.}, language = {en} } @article{RovitusoDuffySchroeteretal.2015, author = {Rovituso, Damiano M. and Duffy, Catharina E. and Schroeter, Michael and Kaiser, Claudia C. and Kleinschnitz, Christoph and Bayas, Antonios and Elsner, Rebecca and Kuerten, Stefanie}, title = {The brain antigen-specific B cell response correlates with glatiramer acetate responsiveness in relapsing-remitting multiple sclerosis patients}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {14265}, doi = {10.1038/srep14265}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148172}, year = {2015}, abstract = {B cells have only recently begun to attract attention in the immunopathology of multiple sclerosis (MS). Suitable markers for the prediction of treatment success with immunomodulatory drugs are still missing. Here we evaluated the B cell response to brain antigens in n = 34 relapsing-remitting MS (RRMS) patients treated with glatiramer acetate (GA) using the enzyme-linked immunospot technique (ELISPOT). Our data demonstrate that patients can be subdivided into responders that show brain-specific B cell reactivity in the blood and patients without this reactivity. Only in patients that classified as B cell responders, there was a significant positive correlation between treatment duration and the time since last relapse in our study. This correlation was GA-specific because it was absent in a control group that consisted of interferon-\(\beta\) (IFN-\(\beta\))-treated RRMS patients (n = 23). These data suggest that GA has an effect on brain-reactive B cells in a subset of patients and that only this subset benefits from treatment. The detection of brain-reactive B cells is likely to be a suitable tool to identify drug responders.}, language = {en} } @article{AktasUpcinHenkeetal.2019, author = {Aktas, Bertal H. and Upcin, Berin and Henke, Erik and Padmasekar, Manju and Qin, Xuebin and Erg{\"u}n, S{\"u}leyman}, title = {The Best for the Most Important: Maintaining a Pristine Proteome in Stem and Progenitor Cells}, series = {Stem Cells International}, journal = {Stem Cells International}, doi = {10.1155/2019/1608787}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227769}, pages = {1-20}, year = {2019}, abstract = {Pluripotent stem cells give rise to reproductively enabled offsprings by generating progressively lineage-restricted multipotent stem cells that would differentiate into lineage-committed stem and progenitor cells. These lineage-committed stem and progenitor cells give rise to all adult tissues and organs. Adult stem and progenitor cells are generated as part of the developmental program and play critical roles in tissue and organ maintenance and/or regeneration. The ability of pluripotent stem cells to self-renew, maintain pluripotency, and differentiate into a multicellular organism is highly dependent on sensing and integrating extracellular and extraorganismal cues. Proteins perform and integrate almost all cellular functions including signal transduction, regulation of gene expression, metabolism, and cell division and death. Therefore, maintenance of an appropriate mix of correctly folded proteins, a pristine proteome, is essential for proper stem cell function. The stem cells' proteome must be pristine because unfolded, misfolded, or otherwise damaged proteins would interfere with unlimited self-renewal, maintenance of pluripotency, differentiation into downstream lineages, and consequently with the development of properly functioning tissue and organs. Understanding how various stem cells generate and maintain a pristine proteome is therefore essential for exploiting their potential in regenerative medicine and possibly for the discovery of novel approaches for maintaining, propagating, and differentiating pluripotent, multipotent, and adult stem cells as well as induced pluripotent stem cells. In this review, we will summarize cellular networks used by various stem cells for generation and maintenance of a pristine proteome. We will also explore the coordination of these networks with one another and their integration with the gene regulatory and signaling networks.}, language = {en} } @article{SchlechtVallonWagneretal.2021, author = {Schlecht, Anja and Vallon, Mario and Wagner, Nicole and Erg{\"u}n, S{\"u}leyman and Braunger, Barbara M.}, title = {TGFβ-Neurotrophin Interactions in Heart, Retina, and Brain}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {9}, issn = {2218-273X}, doi = {10.3390/biom11091360}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246159}, year = {2021}, abstract = {Ischemic insults to the heart and brain, i.e., myocardial and cerebral infarction, respectively, are amongst the leading causes of death worldwide. While there are therapeutic options to allow reperfusion of ischemic myocardial and brain tissue by reopening obstructed vessels, mitigating primary tissue damage, post-infarction inflammation and tissue remodeling can lead to secondary tissue damage. Similarly, ischemia in retinal tissue is the driving force in the progression of neovascular eye diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD), which eventually lead to functional blindness, if left untreated. Intriguingly, the easily observable retinal blood vessels can be used as a window to the heart and brain to allow judgement of microvascular damages in diseases such as diabetes or hypertension. The complex neuronal and endocrine interactions between heart, retina and brain have also been appreciated in myocardial infarction, ischemic stroke, and retinal diseases. To describe the intimate relationship between the individual tissues, we use the terms heart-brain and brain-retina axis in this review and focus on the role of transforming growth factor β (TGFβ) and neurotrophins in regulation of these axes under physiologic and pathologic conditions. Moreover, we particularly discuss their roles in inflammation and repair following ischemic/neovascular insults. As there is evidence that TGFβ signaling has the potential to regulate expression of neurotrophins, it is tempting to speculate, and is discussed here, that cross-talk between TGFβ and neurotrophin signaling protects cells from harmful and/or damaging events in the heart, retina, and brain.}, language = {en} } @article{SchererBauerSchmausetal.2016, author = {Scherer, Sandra D. and Bauer, Jochen and Schmaus, Anja and Neumaier, Christian and Herskind, Carsten and Veldwijk, Marlon R. and Wenz, Frederik and Sleeman, Jonathan P.}, title = {TGF-β1 Is Present at High Levels in Wound Fluid from Breast Cancer Patients Immediately Post-Surgery, and Is Not Increased by Intraoperative Radiation Therapy (IORT)}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {9}, doi = {10.1371/journal.pone.0162221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166811}, pages = {e0162221}, year = {2016}, abstract = {In patients with low-risk breast cancer, intraoperative radiotherapy (IORT) during breast-conserving surgery is a novel and convenient treatment option for delivering a single high dose of irradiation directly to the tumour bed. However, edema and fibrosis can develop after surgery and radiotherapy, which can subsequently impair quality of life. TGF-β is a strong inducer of the extracellular matrix component hyaluronan (HA). TGF-β expression and HA metabolism can be modulated by irradiation experimentally, and are involved in edema and fibrosis. We therefore hypothesized that IORT may regulate these factors.Wound fluid (WF) draining from breast lumpectomy sites was collected and levels of TGF-β1 and HA were determined by ELISA. Proliferation and marker expression was analyzed in primary lymphatic endothelial cells (LECs) treated with recombinant TGF-β or WF. Our results show that IORT does not change TGF-β1 or HA levels in wound fluid draining from breast lumpectomy sites, and does not lead to accumulation of sHA oligosaccharides. Nevertheless, concentrations of TGF-β1 were high in WF from patients regardless of IORT, at concentrations well above those associated with fibrosis and the suppression of LEC identity. Consistently, we found that TGF-β in WF is active and inhibits LEC proliferation. Furthermore, all three TGF-β isoforms inhibited LEC proliferation and suppressed LEC marker expression at pathophysiologically relevant concentrations. Given that TGF-β contributes to edema and plays a role in the regulation of LEC identity, we suggest that inhibition of TGF-β directly after surgery might prevent the development of side effects such as edema and fibrosis.}, language = {en} } @article{RottlaenderKuerten2015, author = {Rottlaender, Andrea and Kuerten, Stefanie}, title = {Stepchild or prodigy? Neuroprotection in multiple sclerosis (MS) research}, series = {International Journal of Molecular Sciences}, volume = {16}, journal = {International Journal of Molecular Sciences}, doi = {10.3390/ijms160714850}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148416}, pages = {14850-14865}, year = {2015}, abstract = {Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS) and characterized by the infiltration of immune cells, demyelination and axonal loss. Loss of axons and nerve fiber pathology are widely accepted as correlates of neurological disability. Hence, it is surprising that the development of neuroprotective therapies has been neglected for a long time. A reason for this could be the diversity of the underlying mechanisms, complex changes in nerve fiber pathology and the absence of biomarkers and tools to quantify neuroregenerative processes. Present therapeutic strategies are aimed at modulating or suppressing the immune response, but do not primarily attenuate axonal pathology. Yet, target-oriented neuroprotective strategies are essential for the treatment of MS, especially as severe damage of nerve fibers mostly occurs in the course of disease progression and cannot be impeded by immune modulatory drugs. This review shall depict the need for neuroprotective strategies and elucidate difficulties and opportunities.}, language = {en} } @article{GruschwitzHartungKleefeldtetal.2023, author = {Gruschwitz, Philipp and Hartung, Viktor and Kleefeldt, Florian and Erg{\"u}n, S{\"u}leyman and Lichthardt, Sven and Huflage, Henner and Hendel, Robin and Kunz, Andreas Steven and Pannenbecker, Pauline and Kuhl, Philipp Josef and Augustin, Anne Marie and Bley, Thorsten Alexander and Petritsch, Bernhard and Grunz, Jan-Peter}, title = {Standardized assessment of vascular reconstruction kernels in photon-counting CT angiographies of the leg using a continuous extracorporeal perfusion model}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-39063-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357912}, year = {2023}, abstract = {This study evaluated the influence of different vascular reconstruction kernels on the image quality of CT angiographies of the lower extremity runoff using a 1st-generation photon-counting-detector CT (PCD-CT) compared with dose-matched examinations on a 3rd-generation energy-integrating-detector CT (EID-CT). Inducing continuous extracorporeal perfusion in a human cadaveric model, we performed CT angiographies of eight upper leg arterial runoffs with radiation dose-equivalent 120 kVp acquisition protocols (CTDIvol 5 mGy). Reconstructions were executed with different vascular kernels, matching the individual modulation transfer functions between scanners. Signal-to-noise-ratios (SNR) and contrast-to-noise-ratios (CNR) were computed to assess objective image quality. Six radiologists evaluated image quality subjectively using a forced-choice pairwise comparison tool. Interrater agreement was determined by calculating Kendall's concordance coefficient (W). The intraluminal attenuation of PCD-CT images was significantly higher than of EID-CT (414.7 ± 27.3 HU vs. 329.3 ± 24.5 HU; p < 0.001). Using comparable kernels, image noise with PCD-CT was significantly lower than with EID-CT (p ≤ 0.044). Correspondingly, SNR and CNR were approximately twofold higher for PCD-CT (p < 0.001). Increasing the spatial frequency for PCD-CT reconstructions by one level resulted in similar metrics compared to EID-CT (CNRfat; EID-CT Bv49: 21.7 ± 3.7 versus PCD-CT Bv60: 21.4 ± 3.5). Overall image quality of PCD-CTA achieved ratings superior to EID-CTA irrespective of the used reconstruction kernels (best: PCD-CT Bv60; worst: EID-CT Bv40; p < 0.001). Interrater agreement was good (W = 0.78). Concluding, PCD-CT offers superior intraluminal attenuation, SNR, and CNR compared to EID-CT in angiographies of the upper leg arterial runoff. Combined with improved subjective image quality, PCD-CT facilitates the use of sharper convolution kernels and ultimately bears the potential of improved vascular structure assessability.}, language = {en} } @article{BoriskinDesyatskovaBogomolovaetal.1986, author = {Boriskin, Yu S. and Desyatskova, R. G. and Bogomolova, N. N. and Gorboulev, Valentin G.}, title = {Stability of rubella virus after long-term persistence in human cell line}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-46944}, year = {1986}, abstract = {Primary infection of HEp-2 cells with rubella virus resulted in non-cytophatic longterm persistent infection. During four years of persistence the virus was produced in sufficient quantities (up to 6 logs PFU/ml) and did not differ from the parental variant in its pathogenicity for BHK-21 or RK-13 cells, or hemagglutinating activity, but formed smaller plaques. Persistent virus preserved the original antigenicity as judged from reciprocal hemagglutination-inhibition or plaque reduction-neutralization tests with polyclonal antisera. Both original and persistent rubella viruses were thermoresistant (T 56° C) and sligthly temperature-sensitive. Clonal analysis revealed presence of ts-mutants among both original and persistent virus clones with different degrees of plating efficiency at 40°/34° C. RNA fingerprinting showed only minor changes in persistent rubella virus.}, language = {en} } @article{KoenigerKuerten2017, author = {Koeniger, Tobias and Kuerten, Stefanie}, title = {Splitting the "unsplittable": Dissecting resident and infiltrating macrophages in experimental autoimmune encephalomyelitis}, series = {International Journal of Molecular Sciences}, volume = {18}, journal = {International Journal of Molecular Sciences}, number = {10}, issn = {1422-0067}, doi = {10.3390/ijms18102072}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285067}, year = {2017}, abstract = {Macrophages predominate the inflammatory landscape within multiple sclerosis (MS) lesions, not only regarding cellularity but also with respect to the diverse functions this cell fraction provides during disease progression and remission. Researchers have been well aware of the fact that the macrophage pool during central nervous system (CNS) autoimmunity consists of a mixture of myeloid cells. Yet, separating these populations to define their unique contribution to disease pathology has long been challenging due to their similar marker expression. Sophisticated lineage tracing approaches as well as comprehensive transcriptome analysis have elevated our insight into macrophage biology to a new level enabling scientists to dissect the roles of resident (microglia and non-parenchymal macrophages) and infiltrating macrophages with unprecedented precision. To do so in an accurate way, researchers have to know their toolbox, which has been filled with diverse, discriminating approaches from decades of studying neuroinflammation in animal models. Every method has its own strengths and weaknesses, which will be addressed in this review. The focus will be on tools to manipulate and/or identify different macrophage subgroups within the injured murine CNS.}, language = {en} } @article{BonnSchmittLeschetal.2013, author = {Bonn, M. and Schmitt, A. and Lesch, K.-P. and Van Bockstaele, E. J. and Asan, E.}, title = {Serotonergic innervation and serotonin receptor expression of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei}, series = {Brain Structure and Function}, volume = {218}, journal = {Brain Structure and Function}, number = {2}, doi = {10.1007/s00429-012-0406-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132591}, pages = {421-435}, year = {2013}, abstract = {Pharmacobehavioral studies in experimental animals, and imaging studies in humans, indicate that serotonergic transmission in the amygdala plays a key role in emotional processing, especially for anxiety-related stimuli. The lateral and basolateral amygdaloid nuclei receive a dense serotonergic innervation in all species studied to date. We investigated interrelations between serotonergic afferents and neuropeptide Y (NPY)-producing neurons, which are a subpopulation of inhibitory interneurons in the rat lateral and basolateral nuclei with particularly strong anxiolytic properties. Dual light microscopic immunolabeling showed numerous appositions of serotonergic afferents on NPY-immunoreactive somata. Using electron microscopy, direct membrane appositions and synaptic contacts between serotonin-containing axon terminals and NPY-immunoreactive cellular profiles were unequivocally established. Double in situ hybridization documented that more than 50 \%, and about 30-40 \% of NPY mRNA-producing neurons, co-expressed inhibitory 5-HT1A and excitatory 5-HT2C mRNA receptor subtype mRNA, respectively, in both nuclei with no gender differences. Triple in situ hybridization showed that individual NPY mRNA-producing interneurons co-express both 5-HT1A and 5-HT2C mRNAs. Co-expression of NPY and 5-HT3 mRNA was not observed. The results demonstrate that serotonergic afferents provide substantial innervation of NPY-producing neurons in the rat lateral and basolateral amygdaloid nuclei. Studies of serotonin receptor subtype co-expression indicate a differential impact of the serotonergic innervation on this small, but important, population of anxiolytic interneurons, and provide the basis for future studies of the circuitry underlying serotonergic modulation of emotional stimulus processing in the amygdala.}, language = {en} } @article{WunschCaspellKuertenetal.2015, author = {Wunsch, Marie and Caspell, Richard and Kuerten, Stefanie and Lehmann, Paul V. and Sundararaman, Srividya}, title = {Serial measurements of apoptotic cell numbers provide better acceptance criterion for PBMC quality than a single measurement prior to the T cell assay}, series = {Cells}, volume = {4}, journal = {Cells}, number = {1}, doi = {10.3390/cells4010040}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150213}, pages = {40-55}, year = {2015}, abstract = {As soon as Peripheral Blood Mononuclear Cells (PBMC) are isolated from whole blood, some cells begin dying. The rate of apoptotic cell death is increased when PBMC are shipped, cryopreserved, or stored under suboptimal conditions. Apoptotic cells secrete cytokines that suppress inflammation while promoting phagocytosis. Increased numbers of apoptotic cells in PBMC may modulate T cell functions in antigen-triggered T cell assays. We assessed the effect of apoptotic bystander cells on a T cell ELISPOT assay by selectively inducing B cell apoptosis using α-CD20 mAbs. The presence of large numbers of apoptotic B cells did not affect T cell functionality. In contrast, when PBMC were stored under unfavorable conditions, leading to damage and apoptosis in the T cells as well as bystander cells, T cell functionality was greatly impaired. We observed that measuring the number of apoptotic cells before plating the PBMC into an ELISPOT assay did not reflect the extent of PBMC injury, but measuring apoptotic cell frequencies at the end of the assay did. Our data suggest that measuring the numbers of apoptotic cells prior to and post T cell assays may provide more stringent PBMC quality acceptance criteria than measurements done only prior to the start of the assay.}, language = {en} } @phdthesis{Kwok2020, author = {Kwok, Chee Keong}, title = {Scaling up production of reprogrammed cells for biomedical applications}, doi = {10.25972/OPUS-19186}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191865}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Induced pluripotent stem cells (iPSCs) have been recognised as a virtually unlimited source of stem cells that can be generated in a patient-specific manner. Due to these cells' potential to give rise to all differentiated cell types of the human body, they have been widely used to derive differentiated cells for drug screening and disease modelling purposes. iPSCs also garner much interest as they can potentially serve as a source for cell replacement therapy. Towards the realisation of these biomedical applications, this thesis aims to address challenges that are associated with scale-up, safety and biofabrication. Firstly, the manufacture of a high number of human iPSCs (hiPSCs) will require standardised procedures for scale-up and the development of a flexible bioprocessing method, since standard adherent hiPSC culture exhibits limited scalability and is labour-intensive. While the quantity of cells that are required for cell therapy depends largely on the tissue and defect that these replacing cells are meant to correct, an estimate of 1 × 10^9 has been suggested to be sufficient for several indications, including myocardial infarction and islet replacement for diabetes. Here, the development of an integrated, microcarrier-free workflow to transition standard adherent hiPSC culture (6-well plates) to scalable stirred suspension culture in bioreactors (1 L working volume, 2.4 L maximum working volume) is presented. The two-phase bioprocess lasts 14 days and generates hiPSC aggregates measuring 198 ± 58 μm in diameter on the harvesting day, yielding close to 2 × 10^9 cells. hiPSCs can be maintained in stirred suspension for at least 7 weeks with weekly passaging, while exhibiting pluripotency-associated markers TRA-1-60, TRA-1-81, SSEA-4, OCT4, and SOX2. These cells retain their ability to differentiate into cells of all the three germ layers in vitro, exemplified by cells positive for AFP, SMA, or TUBB3. Additionally, they maintain a stable karyotype and continue to respond to specification cues, demonstrated by directed differentiation into beating cardiomyocyte-like cells. Therefore, the aim of manufacturing high hiPSC quantities was met using a state-of-the-art scalable suspension bioreactor platform. Secondly, multipotent stem cells such as induced neural stem cells (iNSCs) may represent a safer source of renewable cells compared to pluripotent stem cells. However, pre-conditioning of stem cells prior to transplantation is a delicate issue to ensure not only proper function in the host but also safety. Here, iNSCs which are normally maintained in the presence of factors such as hLIF, CHIR99021, and SB431542 were cultured in basal medium for distinct periods of time. This wash-out procedure results in lower proliferation while maintaining key neural stem cell marker PAX6, suggesting a transient pre-differentiated state. Such pre-treatment may aid transplantation studies to suppress tumourigenesis through transplanted cells, an approach that is being evaluated using a mouse model of experimental focal demyelination and autoimmune encephalomyelitis. Thirdly, biomedical applications of stem cells can benefit from recent advancements in biofabrication, where cells can be arranged in customisable topographical layouts. Employing a 3DDiscovery bioprinter, a bioink consisting of hiPSCs in gelatin-alginate was extruded into disc-shaped moulds or printed in a cross-hatch infill pattern and cross-linked with calcium ions. In both discs and printed patterns, hiPSCs recovered from these bioprints showed viability of around 70\% even after 4 days of culture when loaded into gelatin-alginate solution in aggregate form. They maintained pluripotency-associated markers TRA-1-60 and SSEA-4 and continued to proliferate after re-plating. As further proof-of-principle, printed hiPSC 3D constructs were subjected to targeted neuronal differentiation, developing typical neurite outgrowth and resulting in a widespread network of cells throughout and within the topology of the printed matrix. Staining against TUBB3 confirmed neuronal identity of the differentiated cellular progeny. In conclusion, these data demonstrate that hiPSCs not only survive the 3D-printing process but were able to differentiate along the printed topology in cellular networks.}, subject = {scale-up}, language = {en} } @article{LiuHanBlairetal.2021, author = {Liu, Fengming and Han, Kun and Blair, Robert and Kenst, Kornelia and Qin, Zhongnan and Upcin, Berin and W{\"o}rsd{\"o}rfer, Philipp and Midkiff, Cecily C. and Mudd, Joseph and Belyaeva, Elizaveta and Milligan, Nicholas S. and Rorison, Tyler D. and Wagner, Nicole and Bodem, Jochen and D{\"o}lken, Lars and Aktas, Bertal H. and Vander Heide, Richard S. and Yin, Xiao-Ming and Kolls, Jay K. and Roy, Chad J. and Rappaport, Jay and Erg{\"u}n, S{\"u}leyman and Qin, Xuebin}, title = {SARS-CoV-2 Infects Endothelial Cells In Vivo and In Vitro}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {11}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2021.701278}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241948}, year = {2021}, abstract = {SARS-CoV-2 infection can cause fatal inflammatory lung pathology, including thrombosis and increased pulmonary vascular permeability leading to edema and hemorrhage. In addition to the lung, cytokine storm-induced inflammatory cascade also affects other organs. SARS-CoV-2 infection-related vascular inflammation is characterized by endotheliopathy in the lung and other organs. Whether SARS-CoV-2 causes endotheliopathy by directly infecting endothelial cells is not known and is the focus of the present study. We observed 1) the co-localization of SARS-CoV-2 with the endothelial cell marker CD31 in the lungs of SARS-CoV-2-infected mice expressing hACE2 in the lung by intranasal delivery of adenovirus 5-hACE2 (Ad5-hACE2 mice) and non-human primates at both the protein and RNA levels, and 2) SARS-CoV-2 proteins in endothelial cells by immunogold labeling and electron microscopic analysis. We also detected the co-localization of SARS-CoV-2 with CD31 in autopsied lung tissue obtained from patients who died from severe COVID-19. Comparative analysis of RNA sequencing data of the lungs of infected Ad5-hACE2 and Ad5-empty (control) mice revealed upregulated KRAS signaling pathway, a well-known pathway for cellular activation and dysfunction. Further, we showed that SARS-CoV-2 directly infects mature mouse aortic endothelial cells (AoECs) that were activated by performing an aortic sprouting assay prior to exposure to SARS-CoV-2. This was demonstrated by co-localization of SARS-CoV-2 and CD34 by immunostaining and detection of viral particles in electron microscopic studies. Moreover, the activated AoECs became positive for ACE-2 but not quiescent AoECs. Together, our results indicate that in addition to pneumocytes, SARS-CoV-2 also directly infects mature vascular endothelial cells in vivo and ex vivo, which may contribute to cardiovascular complications in SARS-CoV-2 infection, including multipleorgan failure.}, language = {en} } @phdthesis{Srinivasan2013, author = {Srinivasan, Aruna}, title = {RS1 protein dependent and independent short and long term regulation of sodium dependent glucose transporter -1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85665}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The Na+-D-glucose cotransporter in small intestine is regulated in response to food composition. Short term regulation of SGLT1 occurs post-transcriptionally in response to changes in luminal glucose. Adaptation to dietary carbohydrate involves long term regulation at the transcriptional level. The intracellular protein RS1 (gene RSC1A1) is involved in transcriptional and post-transcriptional regulation of SGLT1. RS1 contains an N-terminal domain with many putative phosphorylation sites. By Expressing SGLT1 in oocytes of Xenopus laevis it was previously demonstrated that the post-transcriptional down-regulation of SGLT1 by RS1 was dependent on the intracellular glucose concentration and activated by protein kinase C (PKC). The role of RS1 for short term regulation of SGLT1 in mouse small intestine in response to glucose and PKC was investigated comparing effects in RS1-/- mice and wildtype mice. Effects on SGLT1 activity were determined by measuring phlorizin inhibited uptake of α-methylglucoside (AMG). The involvement of RS1 in glucose dependent short term regulation could not be elucidated for technical reasons. However, evidence for RS1 independent short-term downregulation of SGLT1 after stimulation of PKC could be provided. It was shown that this downregulation includes decrease in the amount and/or in turnover of SGLT1 in the brush-border membrane as well as an increase of substrate affinity for AMG transport. Trying to elucidate the role of RS1 in long term regulation of SGLT1 in small intestine in response to glucose and fat content of the diet, wildtype and RS1-/- mice were kept for 2 months on a normo-caloric standard diet with high glucose and low fat content (ND), on a hyper-caloric glucose-galactose reduced diet with high fat content (GGRD) or on a hyper-caloric diet with a high fat and high glucose content (HFHGD). Thereafter the animals were starved overnight and SGLT1 mediated AMG uptake was measured. Independent of diet AMG uptake in ileum was smaller compared to duodenum and jejunum. In jejunum of wildtype and RS1-/- mice kept on the fat rich diets (GGRD and HFHGH) transport activity of SGLT1 was lower compared to mice kept on ND with low fat content. This result suggests an RS1 independent downregulation due to fat content of diet. Different to RS1-/- mice, the duodenum of wildtype mice showed transport activity of SGLT1 smaller in mice kept on glucose galactose reduced diet (GGRD) compared to the glucose galactose rich diets (ND and HFHGG). These data indicate that RS1 is involved in glucose dependent long term regulation in duodenum.}, subject = {Glucosetransportproteine}, language = {en} } @phdthesis{Heupel2010, author = {Heupel, Wolfgang-Moritz Felix}, title = {Role and modulation of cadherins in pathologic processes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52716}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Ca2+ dependent cell adhesion molecules (cadherins) are central for a variety of cell and tissue functions such as morphogenesis, epithelial and endothelial barrier formation, synaptic function and cellular signaling. Of paramount importance for cadherin function is their specific extracellular adhesive trans-interaction. Cadherins are embedded in a cellular environment of intracellular and extracellular regulators that modify cadherin binding in response to various physiological and pathological stimuli. Most experimental approaches used for studying cadherin interaction however lack a physiological proof of principle mostly by not investigating cadherins in their physiological environment. In the present cumulative dissertation, experimental approaches were applied to characterize and modulate vascular endothelial (VE)-cadherin and desmocadherin functions in the (patho-)physiological contexts of endothelial permeability regulation and disturbance of epidermal barrier function, which is typical to the blistering skin disease pemphigus, respectively. Whereas VE-cadherin is a key regulator of the endothelial barrier that separates the blood compartment from the interstitial space of tissues, desmosomal cadherins are crucial for maintenance of epidermal integrity and separation of the external environment from the body's internal milieu. Cadherin functions were both investigated in cell-free and cell-based conditions: by using biophysical single molecule techniques like atomic force microscopy (AFM), cadherin function could be investigated in conditions, where contributions of intracellular signaling were excluded. These experiments were, however, compared and combined with cell-based experiments in which cadherins of epidermal or endothelial cell cultures were probed by laser force microscopy (laser tweezers), fluorescence recovery after photobleaching (FRAP) and other techniques. The autoimmune blistering skin diseases pemphigus foliaceus (PF) and pemphigus vulgaris (PV) are caused by autoantibodies directed against the extracellular domains of the desmosomal cadherins desmoglein (Dsg) 1 and 3, which are important for epidermal adhesion. The mechanism of autoantibody-induced cell dissociation (acantholysis) in pemphigus, however, is still not fully understood. For the first time, it is shown by AFM force spectroscopy that pemphigus autoantibodies directly inhibit Dsg3 adhesion by steric hindrance but do not inhibit adhesion of Dsg1. However, the full pathogenicity of the autoantibodies depended on cellular signaling processes, since autoantibodies targeting Dsg1 also resulted in loss of cadherin-mediated adhesion in cell-based experiments. However, two other signaling pathways that have been reported to be involved in pemphigus pathogenesis, i.e. epidermal growth factor receptor (EGFR) and c-Src activation, were not found to be important in this context. Furthermore, peptide-based modulators of cadherin functions were generated for Dsg1/3 and VE-cadherin. By comparing Dsg1, Dsg3 and VE-cadherin sequences to published X-ray structures of cadherin trans-interactions, specific amino acid sequences of the binding pockets of these cadherins were identified. Peptide versions of these motifs were synthesized and the antagonistic functions of these "single peptides" were validated by AFM force spectroscopy as well as by cell-based assays. By linking two single peptides in tandem, stabilization of cadherin bonds because of by cross-bridge formation between trans-interacting cadherins was demonstrated. Protective effects of tandem peptides were shown by partly preventing pemphigus autoantibody-induced acantholysis, or in the case of VE-cadherin, by stabilizing endothelial barrier properties against barrier disrupting agents like the Ca2+ ionophore A23187 and an inhibitory VE-cadherin antibody. Most importantly, VE-cadherin tandem peptides abolished microvascular hyperpermeability induced by the physiologic inflammatory agent tumor necrosis factor-α in the rat mesentery in vivo. Both classes of tandem peptides therefore can be considered as a starting point for the generation of potential therapeutic agents that might prevent cell dissociation in pemphigus and breakdown of the endothelial barrier under inflammatory conditions.}, subject = {Cadherine}, language = {en} } @article{IUedaWoersdoerferetal.2020, author = {I, Takashi and Ueda, Yuichiro and W{\"o}rsd{\"o}rfer, Philipp and Sumita, Yoshinori and Asahina, Izumi and Erg{\"u}n, S{\"u}leyman}, title = {Resident CD34-positive cells contribute to peri-endothelial cells and vascular morphogenesis in salivary gland after irradiation}, series = {Journal of Neural Transmission}, volume = {127}, journal = {Journal of Neural Transmission}, issn = {0300-9564}, doi = {10.1007/s00702-020-02256-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235613}, pages = {1467-1479}, year = {2020}, abstract = {Salivary gland (SG) hypofunction is a common post-radiotherapy complication. Besides the parenchymal damage after irradiation (IR), there are also effects on mesenchymal stem cells (MSCs) which were shown to contribute to regeneration and repair of damaged tissues by differentiating into stromal cell types or releasing vesicles and soluble factors supporting the healing processes. However, there are no adequate reports about their roles during SG damage and regeneration so far. Using an irradiated SG mouse model, we performed certain immunostainings on tissue sections of submandibular glands at different time points after IR. Immunostaining for CD31 revealed that already one day after IR, vascular impairment was induced at the level of capillaries. In addition, the expression of CD44—a marker of acinar cells—diminished gradually after IR and, by 20 weeks, almost disappeared. In contrast, the number of CD34-positive cells significantly increased 4 weeks after IR and some of the CD34-positive cells were found to reside within the adventitia of arteries and veins. Laser confocal microscopic analyses revealed an accumulation of CD34-positive cells within the area of damaged capillaries where they were in close contact to the CD31-positive endothelial cells. At 4 weeks after IR, a fraction of the CD34-positive cells underwent differentiation into α-SMA-positive cells, which suggests that they may contribute to regeneration of smooth muscle cells and/or pericytes covering the small vessels from the outside. In conclusion, SG-resident CD34-positive cells represent a population of progenitors that could contribute to new vessel formation and/or remodeling of the pre-existing vessels after IR and thus, might be an important player during SG tissue healing.}, language = {en} } @article{GenheimerAndreattaAsanetal.2017, author = {Genheimer, Hannah and Andreatta, Marta and Asan, Esther and Pauli, Paul}, title = {Reinstatement of contextual conditioned anxiety in virtual reality and the effects of transcutaneous vagus nerve stimulation in humans}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {17886}, doi = {10.1038/s41598-017-18183-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169892}, year = {2017}, abstract = {Since exposure therapy for anxiety disorders incorporates extinction of contextual anxiety, relapses may be due to reinstatement processes. Animal research demonstrated more stable extinction memory and less anxiety relapse due to vagus nerve stimulation (VNS). We report a valid human three-day context conditioning, extinction and return of anxiety protocol, which we used to examine effects of transcutaneous VNS (tVNS). Seventy-five healthy participants received electric stimuli (unconditioned stimuli, US) during acquisition (Day1) when guided through one virtual office (anxiety context, CTX+) but never in another (safety context, CTX-). During extinction (Day2), participants received tVNS, sham, or no stimulation and revisited both contexts without US delivery. On Day3, participants received three USs for reinstatement followed by a test phase. Successful acquisition, i.e. startle potentiation, lower valence, higher arousal, anxiety and contingency ratings in CTX+ versus CTX-, the disappearance of these effects during extinction, and successful reinstatement indicate validity of this paradigm. Interestingly, we found generalized reinstatement in startle responses and differential reinstatement in valence ratings. Altogether, our protocol serves as valid conditioning paradigm. Reinstatement effects indicate different anxiety networks underlying physiological versus verbal responses. However, tVNS did neither affect extinction nor reinstatement, which asks for validation and improvement of the stimulation protocol.}, language = {en} } @article{WangKarnatiMadhusudhan2022, author = {Wang, Hongjie and Karnati, Srikanth and Madhusudhan, Thati}, title = {Regulation of the homeostatic unfolded protein response in diabetic nephropathy}, series = {Pharmaceuticals}, volume = {15}, journal = {Pharmaceuticals}, number = {4}, issn = {1424-8247}, doi = {10.3390/ph15040401}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267143}, year = {2022}, abstract = {A growing body of scientific evidence indicates that protein homeostasis, also designated as proteostasis, is causatively linked to chronic diabetic nephropathy (DN). Experimental studies have demonstrated that the insulin signaling in podocytes maintain the homeostatic unfolded protein response (UPR). Insulin signaling via the insulin receptor non-canonically activates the spliced X-box binding protein-1 (sXBP1), a highly conserved endoplasmic reticulum (ER) transcription factor, which regulates the expression of genes that control proteostasis. Defective insulin signaling in mouse models of diabetes or the genetic disruption of the insulin signaling pathway in podocytes propagates hyperglycemia induced maladaptive UPR and DN. Insulin resistance in podocytes specifically promotes activating transcription factor 6 (ATF6) dependent pathogenic UPR. Akin to insulin, recent studies have identified that the cytoprotective effect of anticoagulant serine protease-activated protein C (aPC) in DN is mediated by sXBP1. In mouse models of DN, treatment with chemical chaperones that improve protein folding provides an additional benefit on top of currently used ACE inhibitors. Understanding the molecular mechanisms that transmute renal cell specific adaptive responses and that deteriorate renal function in diabetes will enable researchers to develop new therapeutic regimens for DN. Within this review, we focus on the current understanding of homeostatic mechanisms by which UPR is regulated in DN.}, language = {en} } @phdthesis{Gorbunov2008, author = {Gorbunov, Dmitry}, title = {Rat organic cation transporter 1 (rOCT1): investigation of conformational changes and ligand binding}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32645}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Polyspecific organic cation transporters (OCTs) of the SLC22 family mediate downhill transport of organic cations and play an essential role in excretion and distribution of endogenous organic cations and for the uptake, elimination and distribution of cationic drugs and toxins. Although physiological and pharmacological significance of OCTs is widely accepted, many questions concerning structure and transport mechanism still remain open. To investigate conformational changes of the rat OCT1 during transport cycle, voltage-clamp fluorometry was performed with a cysteine-deprived mutant in which phenylalanine 483 in transmembrane helix (TMH) 11 close to the extracellular surface was replaced by cysteine and covalently labeled with tetramethylrhodamine-6-maleimide. Potential-dependent fluorescence changes were observed that were sensitive to the presence of substrates choline, tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), and of the contransported inhibitor tetrabutylammonium (TBuA). The data suggest that the transporter undergoes conformational changes in voltage- and substrate-dependent manner which are compatible with alternating access mechanism. Using potential-dependent fluorescence changes as readout, one high-affinity binding site per substrate and two highaffinity binding sites for TBuA were identified in addition to the previously described single interaction sites. Coexisting high-affinity cation binding sites in organic cation transporters may collect xenobiotics and drugs; however, translocation of organic cations across the membrane may only be induced when a low-affinity cation binding site is loaded. Whereas high-affinity binding of TBuA has no effect on cation uptake by wildtype rat OCT1, replacement by cysteine or serine of amino acids W147, F483, and F486 located in a modeled contact region between TMH2 and TMH11 outside the binding pocket leads to inhibition of MPP or TEA uptake. Thus, mutations of amino acids in transport relevant key positions, which can be distinct from the cation binding region, may transform noninhibitory highaffinity binding sites of high-affinity inhibition sites and thereby cause adverse drug reactions in patients.}, subject = {Kationentransporter 1 der Ratte}, language = {en} } @article{KarnatiGuntasRajendranetal.2022, author = {Karnati, Srikanth and Guntas, Gulcan and Rajendran, Ranjithkumar and Shityakov, Sergey and H{\"o}ring, Marcus and Liebisch, Gerhard and Kosanovic, Djuro and Erg{\"u}n, S{\"u}leyman and Nagai, Michiaki and F{\"o}rster, Carola Y.}, title = {Quantitative lipidomic analysis of Takotsubo syndrome patients' serum}, series = {Frontiers in Cardiovascular Medicine}, volume = {9}, journal = {Frontiers in Cardiovascular Medicine}, number = {797154}, issn = {2297-055X}, doi = {10.3389/fcvm.2022.797154}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270832}, year = {2022}, abstract = {Takotsubo syndrome (TTS), also known as the transient left ventricular apical ballooning syndrome, is in contemporary times known as novel acute cardiac syndrome. It is characterized by transient left ventricular apical akinesis and hyperkinesis of the basal left ventricular portions. Although the precise etiology of TTS is unknown, events like the sudden release of stress hormones, such as the catecholamines and the increased inflammatory status might be plausible causes leading to the cardiovascular pathologies. Recent studies have highlighted that an imbalance in lipid accumulation might promote a deviant immune response as observed in TTS. However, there is no information on comprehensive profiling of serum lipids of TTS patients. Therefore, we investigated a detailed quantitative lipid analysis of TTS patients using ES-MSI. Our results showed significant differences in the majority of lipid species composition in the TTS patients compared to the control group. Furthermore, the computational analyses presented was able to link the altered lipids to the pro-inflammatory cytokines and disseminate possible mechanistic pathways involving TNFα and IL-6. Taken together, our study provides an extensive quantitative lipidome of TTS patients, which may provide a valuable Pre-diagnostic tool. This would facilitate the elucidation of the underlying mechanisms of the disease and to prevent the development of TTS in the future.}, language = {en} } @article{PatzerKunzHuflageetal.2023, author = {Patzer, Theresa Sophie and Kunz, Andreas Steven and Huflage, Henner and Luetkens, Karsten Sebastian and Conrads, Nora and Gruschwitz, Philipp and Pannenbecker, Pauline and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Grunz, Jan-Peter}, title = {Quantitative and qualitative image quality assessment in shoulder examinations with a first-generation photon-counting detector CT}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-35367-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357925}, year = {2023}, abstract = {Photon-counting detector (PCD) CT allows for ultra-high-resolution (UHR) examinations of the shoulder without requiring an additional post-patient comb filter to narrow the detector aperture. This study was designed to compare the PCD performance with a high-end energy-integrating detector (EID) CT. Sixteen cadaveric shoulders were examined with both scanners using dose-matched 120 kVp acquisition protocols (low-dose/full-dose: CTDI\(_{vol}\) = 5.0/10.0 mGy). Specimens were scanned in UHR mode with the PCD-CT, whereas EID-CT examinations were conducted in accordance with the clinical standard as "non-UHR". Reconstruction of EID data employed the sharpest kernel available for standard-resolution scans (ρ\(_{50}\) = 12.3 lp/cm), while PCD data were reconstructed with both a comparable kernel (11.8 lp/cm) and a sharper dedicated bone kernel (16.5 lp/cm). Six radiologists with 2-9 years of experience in musculoskeletal imaging rated image quality subjectively. Interrater agreement was analyzed by calculation of the intraclass correlation coefficient in a two-way random effects model. Quantitative analyses comprised noise recording and calculating signal-to-noise ratios based on attenuation measurements in bone and soft tissue. Subjective image quality was higher in UHR-PCD-CT than in EID-CT and non-UHR-PCD-CT datasets (all p < 0.001). While low-dose UHR-PCD-CT was considered superior to full-dose non-UHR studies on either scanner (all p < 0.001), ratings of low-dose non-UHR-PCD-CT and full-dose EID-CT examinations did not differ (p > 0.99). Interrater reliability was moderate, indicated by a single measures intraclass correlation coefficient of 0.66 (95\% confidence interval: 0.58-0.73; p < 0.001). Image noise was lowest and signal-to-noise ratios were highest in non-UHR-PCD-CT reconstructions at either dose level (p < 0.001). This investigation demonstrates that superior depiction of trabecular microstructure and considerable denoising can be realized without additional radiation dose by employing a PCD for shoulder CT imaging. Allowing for UHR scans without dose penalty, PCD-CT appears as a promising alternative to EID-CT for shoulder trauma assessment in clinical routine.}, language = {en} } @article{FeldheimWendLaueretal.2022, author = {Feldheim, Jonas and Wend, David and Lauer, Mara J. and Monoranu, Camelia M. and Glas, Martin and Kleinschnitz, Christoph and Ernestus, Ralf-Ingo and Braunger, Barbara M. and Meybohm, Patrick and Hagemann, Carsten and Burek, Malgorzata}, title = {Protocadherin Gamma C3 (PCDHGC3) is strongly expressed in glioblastoma and its high expression is associated with longer progression-free survival of patients}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {15}, issn = {1422-0067}, doi = {10.3390/ijms23158101}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284433}, year = {2022}, abstract = {Protocadherins (PCDHs) belong to the cadherin superfamily and represent the largest subgroup of calcium-dependent adhesion molecules. In the genome, most PCDHs are arranged in three clusters, α, β, and γ on chromosome 5q31. PCDHs are highly expressed in the central nervous system (CNS). Several PCDHs have tumor suppressor functions, but their individual role in primary brain tumors has not yet been elucidated. Here, we examined the mRNA expression of PCDHGC3, a member of the PCDHγ cluster, in non-cancerous brain tissue and in gliomas of different World Health Organization (WHO) grades and correlated it with the clinical data of the patients. We generated a PCDHGC3 knockout U343 cell line and examined its growth rate and migration in a wound healing assay. We showed that PCDHGC3 mRNA and protein were significantly overexpressed in glioma tissue compared to a non-cancerous brain specimen. This could be confirmed in glioma cell lines. High PCDHGC3 mRNA expression correlated with longer progression-free survival (PFS) in glioma patients. PCDHGC3 knockout in U343 resulted in a slower growth rate but a significantly faster migration rate in the wound healing assay and decreased the expression of several genes involved in WNT signaling. PCDHGC3 expression should therefore be further investigated as a PFS-marker in gliomas. However, more studies are needed to elucidate the molecular mechanisms underlying the PCDHGC3 effects.}, language = {en} } @article{GergsJahnSchulzetal.2022, author = {Gergs, Ulrich and Jahn, Tina and Schulz, Nico and Großmann, Claudia and Rueckschloss, Uwe and Demus, Uta and Buchwalow, Igor B. and Neumann, Joachim}, title = {Protein phosphatase 2A improves cardiac functional response to ischemia and sepsis}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms23094688}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284035}, year = {2022}, abstract = {Reversible protein phosphorylation is a posttranslational modification of regulatory proteins involved in cardiac signaling pathways. Here, we focus on the role of protein phosphatase 2A (PP2A) for cardiac gene expression and stress response using a transgenic mouse model with cardiac myocyte-specific overexpression of the catalytic subunit of PP2A (PP2A-TG). Gene and protein expression were assessed under basal conditions by gene chip analysis and Western blotting. Some cardiac genes related to the cell metabolism and to protein phosphorylation such as kinases and phosphatases were altered in PP2A-TG compared to wild type mice (WT). As cardiac stressors, a lipopolysaccharide (LPS)-induced sepsis in vivo and a global cardiac ischemia in vitro (stop-flow isolated perfused heart model) were examined. Whereas the basal cardiac function was reduced in PP2A-TG as studied by echocardiography or as studied in the isolated work-performing heart, the acute LPS- or ischemia-induced cardiac dysfunction deteriorated less in PP2A-TG compared to WT. From the data, we conclude that increased PP2A activity may influence the acute stress tolerance of cardiac myocytes.}, language = {en} } @article{GorboulevAxelrodBayev1977, author = {Gorboulev, Valentin G. and Axelrod, Vladimir D. and Bayev, Alexander A.}, title = {Primary structure of baker's yeast valine tRNA\(^{Val}_{2b}\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32546}, year = {1977}, abstract = {The minor form of vallne tBNA from baker's yeaat - tRNA\(^{Val}_{2b}\) - purified by column chromatography was completely digesteft with guanylo-BNase and pancreatic ENase. The products of these digestions were separated by a combination of thin-layer chromatography on cellulose and high voltage electrophoresis on DEAE-paper and then identified. The halves of tRNA Val 2b were prepared by partial digestion with pancreatic Mass and their complete guanylo-BNase and pancreatic ENase, digests were analysed. Basing on the obtained data the primary structure of baker1s yeast tRNA\(^{Val}_{2b}\) was reconstructed.}, language = {en} } @article{ParkerAdriaenssensRogersetal.2012, author = {Parker, H. E. and Adriaenssens, A. and Rogers, G. and Richards, P. and Koepsell, H. and Reimann, F. and Gribble, F. M.}, title = {Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion}, series = {Diabetologia}, volume = {55}, journal = {Diabetologia}, number = {9}, doi = {10.1007/s00125-012-2585-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125927}, pages = {2445-2455}, year = {2012}, abstract = {Aims/hypothesis Several glucose-sensing pathways have been implicated in glucose-triggered secretion of glucagon-like peptide-1 (GLP-1) from intestinal L cells. One involves glucose metabolism and closure of ATP-sensitive K\(^+\) channels, and another exploits the electrogenic nature of Na\(^+\)-coupled glucose transporters (SGLTs). This study aimed to elucidate the role of these distinct mechanisms in glucose-stimulated GLP-1 secretion. Methods Glucose uptake into L cells (either GLUTag cells or cells in primary cultures, using a new transgenic mouse model combining proglucagon promoter-driven Cre recombinase with a ROSA26tdRFP reporter) was monitored with the FLII\(_{12}\)Pglu-700μδ6 glucose sensor. Effects of pharmacological and genetic interference with SGLT1 or facilitative glucose transport (GLUT) on intracellular glucose accumulation and metabolism (measured by NAD(P)H autofluorescence), cytosolic Ca\(^{2+}\) (monitored with Fura2) and GLP-1 secretion (assayed by ELISA) were assessed. Results L cell glucose uptake was dominated by GLUT-mediated transport, being abolished by phloretin but not phloridzin. NAD(P)H autofluorescence was glucose dependent and enhanced by a glucokinase activator. In GLUTag cells, but not primary L cells, phloretin partially impaired glucose-dependent secretion, and suppressed an amplifying effect of glucose under depolarising high K\(^+\) conditions. The key importance of SGLT1 in GLUTag and primary cells was evident from the impairment of secretion by phloridzin or Sglt1 knockdown and failure of glucose to trigger cytosolic Ca\(^{2+}\) elevation in primary L cells from Sglt1 knockout mice. Conclusions/interpretation SGLT1 acts as the luminal glucose sensor in L cells, but intracellular glucose concentrations are largely determined by GLUT activity. Although L cell glucose metabolism depends partially on glucokinase activity, this plays only a minor role in glucose-stimulated GLP-1 secretion.}, language = {en} } @article{HuflageGrunzPatzeretal.2023, author = {Huflage, Henner and Grunz, Jan-Peter and Patzer, Theresa Sophie and Pannenbecker, Pauline and Feldle, Philipp and Sauer, Stephanie Tina and Petritsch, Bernhard and Erg{\"u}n, S{\"u}leyman and Bley, Thorsten Alexander and Kunz, Andreas Steven}, title = {Potential of unenhanced ultra-low-dose abdominal photon-counting CT with tin filtration: a cadaveric study}, series = {Diagnostics}, volume = {13}, journal = {Diagnostics}, number = {4}, issn = {2075-4418}, doi = {10.3390/diagnostics13040603}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304122}, year = {2023}, abstract = {Objectives: This study investigated the feasibility and image quality of ultra-low-dose unenhanced abdominal CT using photon-counting detector technology and tin prefiltration. Materials and Methods: Employing a first-generation photon-counting CT scanner, eight cadaveric specimens were examined both with tin prefiltration (Sn 100 kVp) and polychromatic (120 kVp) scan protocols matched for radiation dose at three different levels: standard-dose (3 mGy), low-dose (1 mGy) and ultra-low-dose (0.5 mGy). Image quality was evaluated quantitatively by means of contrast-to-noise-ratios (CNR) with regions of interest placed in the renal cortex and subcutaneous fat. Additionally, three independent radiologists performed subjective evaluation of image quality. The intraclass correlation coefficient was calculated as a measure of interrater reliability. Results: Irrespective of scan mode, CNR in the renal cortex decreased with lower radiation dose. Despite similar mean energy of the applied x-ray spectrum, CNR was superior for Sn 100 kVp over 120 kVp at standard-dose (17.75 ± 3.51 vs. 14.13 ± 4.02), low-dose (13.99 ± 2.6 vs. 10.68 ± 2.17) and ultra-low-dose levels (8.88 ± 2.01 vs. 11.06 ± 1.74) (all p ≤ 0.05). Subjective image quality was highest for both standard-dose protocols (score 5; interquartile range 5-5). While no difference was ascertained between Sn 100 kVp and 120 kVp examinations at standard and low-dose levels, the subjective image quality of tin-filtered scans was superior to 120 kVp with ultra-low radiation dose (p < 0.05). An intraclass correlation coefficient of 0.844 (95\% confidence interval 0.763-0.906; p < 0.001) indicated good interrater reliability. Conclusions: Photon-counting detector CT permits excellent image quality in unenhanced abdominal CT with very low radiation dose. Employment of tin prefiltration at 100 kVp instead of polychromatic imaging at 120 kVp increases the image quality even further in the ultra-low-dose range of 0.5 mGy.}, language = {en} } @article{Haveman2023, author = {Haveman, Rense}, title = {Phytosociological notes on hedges in South Ayrshire, Scotland}, series = {Forum Geobotanicum}, volume = {11}, journal = {Forum Geobotanicum}, issn = {1867-9315}, doi = {10.3264/FG.2023.0420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312634}, pages = {1-7}, year = {2023}, abstract = {On the basis of four relev{\´e}es of hedges around Straiton en Dailly in South Ayrshire, Scotland, some features of hedges are discussed. On the basis of the brambles, the vegetation of these hedges can be assigned to the Pruno-Rubion sprengelii, which comprises the bramble scrubs of circumneutral and nutrient rich soils in West Europe (Haveman et al. 2017, Haveman \& de Ronde 2019). Until now, this alliance was thought to be restricted to the northwestern edge of the European continent, but based on these relev{\´e}es and the known distribution area of Rubus nemoralis and Rubus polyanthemus, both characteristic for the Pruno-Rubion sprengelii, large parts of North England and Scotland have to be included in the distribution area of the alliance. The Pruno-Rubion sprengelii is optimally developed in rather narrow structures, like hedges, which are pruned every year. Here, brambles and herbs alike can grow with and under the shrubs, facilitated by the light that reaches large parts of the ground. Where the economic base of hedges perishes, they are not longer maintained, and the shrubs can grow out to their natural proportions. This changes the amount of light reaching the surface in the inner parts of the thicket, changing the competition between the species. The brambles as well as the herbs are displaced to the outer edges of the scrub, and the vegetation "dissociates" in a high-growing scrub, a fore-mantle ("cuff") with brambles, and a fringe with perennial herbs. These elements can hardly ever be assigned to the Pruno-Rubion anymore. The Pruno-Rubion sprengelii in optima forma is a scrub in which the three elements (shrubs, brambles, and herbs) grow closely intertwined. This is rarely found in natural landscapes, and thus the alliance is a typical element of the old farmer landscape. What is more: the typical species of the alliance, like Rubus nemoralis and R. polyanthemus, could only evolve after the landscape was opened by farmers in the last six millennia (Matzke-Hajek 1997), giving way to Rubus ulmifolius to expand its distribution area. This caused an explosion of hybrids which stabilised through apomixis into the wealth of Rubus species inhibiting the West European landscape nowadays (Sochor et al. 2015). Many of these species have their original home in a man-made landscape. Therefore, the Pruno-Rubion sprengelii can be characterised as a "farmers alliance" pur sang.}, subject = {Brombeere}, language = {en} } @article{RichterMathesFroniusetal.2016, author = {Richter, K. and Mathes, V. and Fronius, M. and Althaus, M. and Hecker, A. and Krasteva-Christ, G. and Padberg, W. and Hone, A. J. and McIntosh, J. M. and Zakrzewicz, A. and Grau, V.}, title = {Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {28660}, doi = {10.1038/srep28660}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167655}, year = {2016}, abstract = {We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions.}, language = {en} } @article{SagivMichaeliAssietal.2015, author = {Sagiv, Jitka Y. and Michaeli, Janna and Assi, Simaan and Mishalian, Inbal and Kisos, Hen and Levy, Liran and Damti, Pazzit and Lumbroso, Delphine and Polyansky, Lola and Sionov, Ronit V. and Ariel, Amiram and Hovav, Avi-Hai and Henke, Erik and Fridlender, Zvi G. and Granot, Zvi}, title = {Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer}, series = {Cell Reports}, volume = {10}, journal = {Cell Reports}, number = {4}, doi = {10.1016/j.celrep.2014.12.039}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144102}, pages = {562-573}, year = {2015}, abstract = {Controversy surrounds neutrophil function in cancer because neutrophils were shown to provide both pro-and antitumor functions. We identified a heterogeneous subset of low-density neutrophils (LDNs) that appear transiently in self-resolving inflammation but accumulate continuously with cancer progression. LDNs display impaired neutrophil function and immunosuppressive properties, characteristics that are in stark contrast to those of mature, high-density neutrophils (HDNs). LDNs consist of both immature myeloid-derived suppressor cells (MDSCs) and mature cells that are derived from HDNs in a TGF-beta-dependent mechanism. Our findings identify three distinct populations of circulating neutrophils and challenge the concept that mature neutrophils have limited plasticity. Furthermore, our findings provide a mechanistic explanation to mitigate the controversy surrounding neutrophil function in cancer.}, language = {en} } @inproceedings{WernerWakabayashiJahnsetal.2017, author = {Werner, Rudolf and Wakabayashi, Hiroshi and Jahns, Roland and Erg{\"u}n, S{\"u}leyman and Jahns, Valerie and Higuchi, Takahiro}, title = {PET-Guided Histological Characterization of Myocardial Infiltrating Cells in a Rat Model of Myocarditis}, series = {European Heart Journal - Cardiovascular Imaging}, volume = {18}, booktitle = {European Heart Journal - Cardiovascular Imaging}, number = {Supplement}, publisher = {Oxford University Press}, issn = {2047-2404}, doi = {10.1093/ehjci/jex071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161127}, pages = {i1-i3}, year = {2017}, abstract = {No abstract available.}, subject = {Myokarditis}, language = {en} } @article{WatermannMeyerWagneretal.2023, author = {Watermann, Christoph and Meyer, Malin Tordis and Wagner, Steffen and Wittekindt, Claus and Klussmann, Jens Peter and Erguen, Sueleyman and Baumgart-Vogt, Eveline and Karnati, Srikanth}, title = {Peroxisomes are highly abundant and heterogeneous in human parotid glands}, series = {International Journal of Molecular Sciences}, volume = {24}, journal = {International Journal of Molecular Sciences}, number = {5}, issn = {1422-0067}, doi = {10.3390/ijms24054783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311079}, year = {2023}, abstract = {The parotid gland is one of the major salivary glands producing a serous secretion, and it plays an essential role in the digestive and immune systems. Knowledge of peroxisomes in the human parotid gland is minimal; furthermore, the peroxisomal compartment and its enzyme composition in the different cell types of the human parotid gland have never been subjected to a detailed investigation. Therefore, we performed a comprehensive analysis of peroxisomes in the human parotid gland's striated duct and acinar cells. We combined biochemical techniques with various light and electron microscopy techniques to determine the localization of parotid secretory proteins and different peroxisomal marker proteins in parotid gland tissue. Moreover, we analyzed the mRNA of numerous gene encoding proteins localized in peroxisomes using real-time quantitative PCR. The results confirm the presence of peroxisomes in all striated duct and acinar cells of the human parotid gland. Immunofluorescence analyses for various peroxisomal proteins showed a higher abundance and more intense staining in striated duct cells compared to acinar cells. Moreover, human parotid glands comprise high quantities of catalase and other antioxidative enzymes in discrete subcellular regions, suggesting their role in protection against oxidative stress. This study provides the first thorough description of parotid peroxisomes in different parotid cell types of healthy human tissue.}, language = {en} } @phdthesis{Chintalapati2013, author = {Chintalapati, Chakravarthi}, title = {Ornithine decarboxylase is the receptor of regulatory protein RS1 (RSC1A1) mediating RS1 dependent shortterm regulation of glucose transporter SGLT1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85622}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {RS1 is the intron less singel copy gene involved in regulation of plasme membrane transporters. Ornithine decarboxylase is identified as the receptor of RS1 specific for the release of vesicles containing SGLT1 specifically at the trans-golgi network. RS1 decreases the activity of ODC there by inhibiting the release of vesicles containing specifically SGLT1.}, subject = {Ornithindecarboxylase}, language = {en} }