@article{BarileBerryBlaauboeretal.2021, author = {Barile, Frank A. and Berry, Colin and Blaauboer, Bas and Boobis, Alan and Bolt, Herrmann M. and Borgert, Christopher and Dekant, Wolfgang and Dietrich, Daniel and Domingo, Jose L. and Galli, Corrado L. and Gori, Gio Batta and Greim, Helmut and Hengstler, Jan G. and Heslop-Harrison, Pat and Kacew, Sam and Marquardt, Hans and Mally, Angela and Pelkonen, Olavi and Savolainen, Kai and Testai, Emanuela and Tsatsakis, Aristides and Vermeulen, Nico P.}, title = {The EU chemicals strategy for sustainability: in support of the BfR position}, series = {Archives of Toxicology}, volume = {95}, journal = {Archives of Toxicology}, number = {9}, issn = {0340-5761}, doi = {10.1007/s00204-021-03125-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307154}, pages = {3133-3136}, year = {2021}, abstract = {The EU chemicals strategy for sustainability (CSS) asserts that both human health and the environment are presently threatened and that further regulation is necessary. In a recent Guest Editorial, members of the German competent authority for risk assessment, the BfR, raised concerns about the scientific justification for this strategy. The complexity and interdependence of the networks of regulation of chemical substances have ensured that public health and wellbeing in the EU have continuously improved. A continuous process of improvement in consumer protection is clearly desirable but any initiative directed towards this objective must be based on scientific knowledge. It must not confound risk with other factors in determining policy. This conclusion is fully supported in the present Commentary including the request to improve both, data collection and the time-consuming and bureaucratic procedures that delay the publication of regulations.}, language = {en} } @article{GuthHueserRothetal.2021, author = {Guth, Sabine and H{\"u}ser, Stephanie and Roth, Angelika and Degen, Gisela and Diel, Patrick and Edlund, Karolina and Eisenbrand, Gerhard and Engel, Karl-Heinz and Epe, Bernd and Grune, Tilman and Heinz, Volker and Henle, Thomas and Humpf, Hans-Ulrich and J{\"a}ger, Henry and Joost, Hans-Georg and Kulling, Sabine E. and Lampen, Alfonso and Mally, Angela and Marchan, Rosemarie and Marko, Doris and M{\"u}hle, Eva and Nitsche, Michael A. and R{\"o}hrdanz, Elke and Stadler, Richard and van Thriel, Christoph and Vieths, Stefan and Vogel, Rudi F. and Wascher, Edmund and Watzl, Carsten and N{\"o}thlings, Ute and Hengstler, Jan G.}, title = {Contribution to the ongoing discussion on fluoride toxicity}, series = {Archives of Toxicology}, volume = {95}, journal = {Archives of Toxicology}, number = {7}, issn = {0340-5761}, doi = {10.1007/s00204-021-03072-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-307161}, pages = {2571-2587}, year = {2021}, abstract = {Since the addition of fluoride to drinking water in the 1940s, there have been frequent and sometimes heated discussions regarding its benefits and risks. In a recently published review, we addressed the question if current exposure levels in Europe represent a risk to human health. This review was discussed in an editorial asking why we did not calculate benchmark doses (BMD) of fluoride neurotoxicity for humans. Here, we address the question, why it is problematic to calculate BMDs based on the currently available data. Briefly, the conclusions of the available studies are not homogeneous, reporting negative as well as positive results; moreover, the positive studies lack control of confounding factors such as the influence of well-known neurotoxicants. We also discuss the limitations of several further epidemiological studies that did not meet the inclusion criteria of our review. Finally, it is important to not only focus on epidemiological studies. Rather, risk analysis should consider all available data, including epidemiological, animal, as well as in vitro studies. Despite remaining uncertainties, the totality of evidence does not support the notion that fluoride should be considered a human developmental neurotoxicant at current exposure levels in European countries.}, language = {en} } @article{HadiBankogluStopper2023, author = {Hadi, Naji Said Aboud and Bankoglu, Ezgi Eyluel and Stopper, Helga}, title = {Genotoxicity of pyrrolizidine alkaloids in metabolically inactive human cervical cancer HeLa cells co-cultured with human hepatoma HepG2 cells}, series = {Archives of Toxicology}, volume = {97}, journal = {Archives of Toxicology}, number = {1}, doi = {10.1007/s00204-022-03394-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324708}, pages = {295-306}, year = {2023}, abstract = {Pyrrolizidine alkaloids (PAs) are secondary plant metabolites, which can be found as contaminant in various foods and herbal products. Several PAs can cause hepatotoxicity and liver cancer via damaging hepatic sinusoidal endothelial cells (HSECs) after hepatic metabolization. HSECs themselves do not express the required metabolic enzymes for activation of PAs. Here we applied a co-culture model to mimic the in vivo hepatic environment and to study PA-induced effects on not metabolically active neighbour cells. In this co-culture model, bioactivation of PA was enabled by metabolically capable human hepatoma cells HepG2, which excrete the toxic and mutagenic pyrrole metabolites. The human cervical epithelial HeLa cells tagged with H2B-GFP were utilized as non-metabolically active neighbours because they can be identified easily based on their green fluorescence in the co-culture. The PAs europine, riddelliine and lasiocarpine induced micronuclei in HepG2 cells, and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Metabolic inhibition of cytochrome P450 enzymes with ketoconazole abrogated micronucleus formation. The efflux transporter inhibitors verapamil and benzbromarone reduced micronucleus formation in the co-culture model. Furthermore, mitotic disturbances as an additional genotoxic mechanism of action were observed in HepG2 cells and in HeLa H2B-GFP cells co-cultured with HepG2 cells, but not in HeLa H2B-GFP cells cultured alone. Overall, we were able to show that PAs were activated by HepG2 cells and the metabolites induced genomic damage in co-cultured HeLa cells.}, language = {en} } @article{BittnerBoonDelbancoetal.2022, author = {Bittner, Nataly and Boon, Andy and Delbanco, Evert H. and Walter, Christof and Mally, Angela}, title = {Assessment of aromatic amides in printed food contact materials: analysis of potential cleavage to primary aromatic amines during simulated passage through the gastrointestinal tract}, series = {Archives of Toxicology}, volume = {96}, journal = {Archives of Toxicology}, number = {5}, doi = {10.1007/s00204-022-03254-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324697}, pages = {1423-1435}, year = {2022}, abstract = {Recent analyses conducted by German official food control reported detection of the aromatic amides N-(2,4-dimethylphenyl)acetamide (NDPA), N-acetoacetyl-m-xylidine (NAAX) and 3-hydroxy-2-naphthanilide (Naphthol AS) in cold water extracts from certain food contact materials made from paper or cardboard, including paper straws, paper napkins, and cupcake liners. Because aromatic amides may be cleaved to potentially genotoxic primary amines upon oral intake, these findings raise concern that transfer of NDPA, NAAX and Naphthol AS from food contact materials into food may present a risk to human health. The aim of the present work was to assess the stability of NDPA, NAAX and Naphthol AS and potential cleavage to 2,4-dimethylaniline (2,4-DMA) and aniline during simulated passage through the gastrointestinal tract using static in vitro digestion models. Using the digestion model established by the National Institute for Public Health and the Environment (RIVM, Bilthoven, NL) and a protocol recommended by the European Food Safety Authority, potential hydrolysis of the aromatic amides to the respective aromatic amines was assessed by LC-MS/MS following incubation of the aromatic amides with digestive fluid simulants. Time-dependent hydrolysis of NDPA and NAAX resulting in formation of the primary aromatic amine 2,4-DMA was consistently observed in both models. The highest rate of cleavage of NDPA and NAAX was recorded following 4 h incubation with 0.07 M HCl as gastric-juice simulant, and amounted to 0.21\% and 0.053\%, respectively. Incubation of Naphthol AS with digestive fluid simulants did not give rise to an increase in the concentration of aniline above the background that resulted from the presence of aniline as an impurity of the test compound. Considering the lack of evidence for aniline formation from Naphthol AS and the extremely low rate of hydrolysis of the amide bonds of NDPA and NAAX during simulated passage through the gastrointestinal tract that gives rise to only very minor amounts of the potentially mutagenic and/or carcinogenic aromatic amine 2,4-DMA, risk assessment based on assumption of 100\% cleavage to the primary aromatic amines would appear to overestimate health risks related to the presence of aromatic amides in food contact materials.}, language = {en} } @phdthesis{Horn2024, author = {Horn, Daniela}, title = {Kardiotoxizit{\"a}t von CTRPs und das Vorkommen der CTRP-Rezeptoren in Kardiomyozyten}, doi = {10.25972/OPUS-34902}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349029}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Die C1q/tumor necrosis factor-related proteins (CTRPs) sind eine Ligandenfamilie aus sezernierten Plasmaproteinen, welche sich in ihrem Grundbauplan {\"a}hneln. Daten aus der Literatur deuten darauf hin, dass sie zum Teil positive Effekte auf den Stoffwechsel und das Herz-Kreislaufsystem besitzen und somit eine m{\"o}gliche therapeutische Zielstruktur darstellen. W{\"a}hrend f{\"u}r manche CTRPs bereits Rezeptoren identifiziert werden konnten, ist f{\"u}r andere immer noch nicht gekl{\"a}rt, an welche Rezeptoren sie binden oder {\"u}ber welche sie diese Wirkungen erzielen. Um die CTRPs zuk{\"u}nftig therapeutisch nutzen zu k{\"o}nnen, muss die Wirkung der CTRPs auf verschiedene Zellen weiter analysiert werden. Daf{\"u}r wurden in dieser Arbeit Zellen, auf die Expression bereits bekannter CTRP-Rezeptoren hin, untersucht. Des Weiteren wurden die durch CTRP2, CTRP3, CTRP4, CTRP9A, CTRP10, CTRP11, CTRP13 und CTRP14 induzierten {\"A}nderungen in der ATP- und Laktatproduktion als Surrogatparameter f{\"u}r Kardiotoxizit{\"a}t in den Kardiomyozytenzelllinien H9c2 und AC16 getestet, um potenziell kardiotoxische Wirkungen fr{\"u}hzeitig erkennen zu k{\"o}nnen. Es konnte gezeigt werden, dass die CTRPs sicher f{\"u}r Kardiomyozyten zu sein scheinen, was eine wichtige Grundlage f{\"u}r die therapeutische Nutzbarkeit darstellt.}, subject = {Herzmuskelzelle}, language = {de} } @article{NwoghaAbtewRaveendranetal.2023, author = {Nwogha, Jeremiah S. and Abtew, Wosene G. and Raveendran, Muthurajan and Oselebe, Happiness O. and Obidiegwu, Jude E. and Chilaka, Cynthia A. and Amirtham, Damodarasamy D.}, title = {Role of non-structural sugar metabolism in regulating tuber dormancy in white yam (Dioscorea rotundata)}, series = {Agriculture}, volume = {13}, journal = {Agriculture}, number = {2}, issn = {2077-0472}, doi = {10.3390/agriculture13020343}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304486}, year = {2023}, abstract = {Changes in sugar composition occur continuously in plant tissues at different developmental stages. Tuber dormancy induction, stability, and breaking are very critical developmental transitions in yam crop production. Prolonged tuber dormancy after physiological maturity has constituted a great challenge in yam genetic improvement and productivity. In the present study, biochemical profiling of non-structural sugar in yam tubers during dormancy was performed to determine the role of non-structural sugar in yam tuber dormancy regulation. Two genotypes of the white yam species, one local genotype (Obiaoturugo) and one improved genotype (TDr1100873), were used for this study. Tubers were sampled at 42, 56, 87, 101, 115, and 143 days after physiological maturity (DAPM). Obiaoturugo exhibited a short dormant phenotype and sprouted at 101-DAPM, whereas TDr1100873 exhibited a long dormant phenotype and sprouted at 143-DAPM. Significant metabolic changes were observed in non-structural sugar parameters, dry matter, and moisture content in Obiaoturugo from 56-DAPM, whereas in TDr1100873, significant metabolic changes were observed from 101-DAPM. It was observed that the onset of these metabolic changes occurred at a point when the tubers of both genotypes exhibited a dry matter content of 60\%, indicating that a dry matter content of 60\% might be a critical threshold for white yam tuber sprouting. Non-reducing sugars increased by 9-10-fold during sprouting in both genotypes, which indicates their key role in tuber dormancy regulation in white yam. This result implicates that some key sugar metabolites can be targeted for dormancy manipulation of the yam crop.}, language = {en} } @phdthesis{Zink2023, author = {Zink, Christoph}, title = {Biochemische und strukturbiologische Charakterisierung der Inhibition der Pyridoxal 5´-Phosphat Phosphatase durch 7,8-Dihydroxyflavon}, doi = {10.25972/OPUS-25151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251511}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die Pyridoxal-5'-Phosphat Phosphatase (PDXP), auch bekannt als Chronophin (CIN), ist eine HAD-Phosphatase, die beim Menschen ubiquit{\"a}r exprimiert wird und eine entscheidende Rolle im zellul{\"a}ren Vitamin-B6-Metabolismus einnimmt. PDXP ist in der Lage Pyridoxal-5'-Phosphat (PLP), die co-enzymatisch aktive Form von Vitamin B6, zu dephosphorylieren. In-vivo Studien mit M{\"a}usen zeigten, dass die Abwesenheit von PDXP mit verbesserten kognitiven Leistungen und einem verringerten Wachstum von Hirntumoren assoziiert ist. Dies begr{\"u}ndet die gezielte Suche nach einem pharmakologischen Inhibitor f{\"u}r PDXP. Ein Hochdurchsatz-Screen legte nahe, dass 7,8-Dihydroxyflavon (7,8-DHF) hierf{\"u}r ein potenzieller Kandidat ist. Zahlreiche Studien beschreiben bereits vielf{\"a}ltige positive neurologische Effekte nach in-vivo Administration von 7,8-DHF, allerdings bleibt der genaue Wirkmechanismus umstritten und wird bis dato nicht mit PDXP in Zusammenhang gebracht. Ziel dieser Arbeit ist es, die Inhibition von PDXP durch 7,8-DHF n{\"a}her zu charakterisieren und damit einen Beitrag zur Beantwortung der Frage zu leisten, ob PDXP an den 7,8-DHF-induzierten Effekten beteiligt ist. Hierzu wurde der Effekt von 7,8-DHF auf die enzymatische Aktivit{\"a}t von rekombinant hergestelltem, gereinigtem PDXP in in-vitro Phosphatase-Assays charakterisiert. Um die Selektivit{\"a}t von 7,8-DHF gegen{\"u}ber PDXP zu untersuchen, wurden f{\"u}nf weitere HAD-Phosphatasen getestet. Unter den analysierten Phosphatasen zeigte einzig die dem PDXP nah verwandte Phosphoglykolat Phosphatase (PGP) eine geringer ausgepr{\"a}gte Sensitivit{\"a}t gegen 7,8-DHF. Ein Vergleich von 7,8-DHF mit sechs strukturell verwandten, hydroxylierten Flavonen zeigte, dass 7,8-DHF unter den getesteten Substanzen die h{\"o}chste Potenz und Effektivit{\"a}t aufwies. Außerdem wurde eine Co-Kristallisation von PDXP mit 7,8-DHF durchgef{\"u}hrt, deren Struktur bis zu einer Aufl{\"o}sung von 2,0 {\AA} verfeinert werden konnte. Die in der Kristallstruktur identifizierte Bindungsstelle von 7,8-DHF an PDXP wurde mittels verschiedener, neu generierter PDXP-Mutanten enzymkinetisch best{\"a}tigt. Zusammenfassend zeigen die hier beschriebenen Ergebnisse, dass 7,8-DHF ein direkter, selektiver und vorwiegend kompetitiver Inhibitor der PDXP-Aktivit{\"a}t ist, mit einer IC50 im submikromolaren Bereich. Die Ergebnisse dieser in-vitro Untersuchungen motivieren zu weiterer Forschung bez{\"u}glich der 7,8-DHF-vermittelten Inhibition der PDXP-Aktivit{\"a}t in Zellen, um die Frage beantworten zu k{\"o}nnen, ob PDXP auch in-vivo ein relevantes Target f{\"u}r 7,8-DHF darstellt.}, subject = {Pyridoxalphosphat}, language = {de} } @phdthesis{Eppli2023, author = {Eppli, Nenad}, title = {Untersuchung des Einflusses der ERK1/2-Autophosphorylierung an Threonin 188 auf Mausherzen mittels transgener M{\"a}use mit ubiquit{\"a}rer {\"U}berexpression von ERK2\(^{T188D}\)}, doi = {10.25972/OPUS-21655}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216558}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Die ERK2Thr188-Autophosphoylierung stellt einen regulatorischen Signalweg dar, der infolge einer hypertrophen Stimulation die kardiale Hypertrophie beg{\"u}nstigt. Eine Hemmung dieser Phosphorylierung in Kardiomyozyten verhindert die Ausbildung der kardialen Hypertrophie ohne Beeinflussung der kardioprotektiven Funktionen von ERK1/2. Demgegen{\"u}ber f{\"u}hrt die dauerhafte Simulation zu einem gain-of-function-Ph{\"a}notypen mit ausgepr{\"a}gter Hypertophie, Fibrose und einer reduzierten Herzfunktion. In dieser Arbeit wurde die dauerhafte Simulation ERK2Thr188-Phosphorylierung (T188D) in einem Mausmodell mit ubiquit{\"a}rer Expression dieser Mutation untersucht. Dabei konnte gezeigt werden, dass sich nach Stimulation durch TAC in diesen Tieren ein etwas st{\"a}rkerer hypertropher Ph{\"a}notyp mit vergr{\"o}ßerten Kardiomyozyten, gesteigerter interstitieller Fibrosierung und reduzierter Herzfunktion ausbildet als in M{\"a}usen mit kardiomyozyten-spezifischer {\"U}berexpression diese Mutante. In Fibroblasten- und VSMC-Zelllinien wurde eine gesteigerte Proliferation der T188D-{\"u}berexprimierenden Zellen im Vergleich zu Kontrollen festgestellt. Somit scheint die ERK2Thr188-Phosphorylierung auch in kardialen Nicht-Myozyten einen maladaptiven Einfluss auf das Herz auszu{\"u}ben.}, subject = {Herzhypertrophie}, language = {de} } @article{SedaghatHamedaniRebsKayvanpouretal.2022, author = {Sedaghat-Hamedani, Farbod and Rebs, Sabine and Kayvanpour, Elham and Zhu, Chenchen and Amr, Ali and M{\"u}ller, Marion and Haas, Jan and Wu, Jingyan and Steinmetz, Lars M. and Ehlermann, Philipp and Streckfuss-B{\"o}meke, Katrin and Frey, Norbert and Meder, Benjamin}, title = {Genotype complements the phenotype: identification of the pathogenicity of an LMNA splice variant by nanopore long-read sequencing in a large DCM family}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {20}, issn = {1422-0067}, doi = {10.3390/ijms232012230}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290415}, year = {2022}, abstract = {Dilated cardiomyopathy (DCM) is a common cause of heart failure (HF) and is of familial origin in 20-40\% of cases. Genetic testing by next-generation sequencing (NGS) has yielded a definite diagnosis in many cases; however, some remain elusive. In this study, we used a combination of NGS, human-induced pluripotent-stem-cell-derived cardiomyocytes (iPSC-CMs) and nanopore long-read sequencing to identify the causal variant in a multi-generational pedigree of DCM. A four-generation family with familial DCM was investigated. Next-generation sequencing (NGS) was performed on 22 family members. Skin biopsies from two affected family members were used to generate iPSCs, which were then differentiated into iPSC-CMs. Short-read RNA sequencing was used for the evaluation of the target gene expression, and long-read RNA nanopore sequencing was used to evaluate the relevance of the splice variants. The pedigree suggested a highly penetrant, autosomal dominant mode of inheritance. The phenotype of the family was suggestive of laminopathy, but previous genetic testing using both Sanger and panel sequencing only yielded conflicting evidence for LMNA p.R644C (rs142000963), which was not fully segregated. By re-sequencing four additional affected family members, further non-coding LMNA variants could be detected: rs149339264, rs199686967, rs201379016, and rs794728589. To explore the roles of these variants, iPSC-CMs were generated. RNA sequencing showed the LMNA expression levels to be significantly lower in the iPSC-CMs of the LMNA variant carriers. We demonstrated a dysregulated sarcomeric structure and altered calcium homeostasis in the iPSC-CMs of the LMNA variant carriers. Using targeted nanopore long-read sequencing, we revealed the biological significance of the variant c.356+1G>A, which generates a novel 5′ splice site in exon 1 of the cardiac isomer of LMNA, causing a nonsense mRNA product with almost complete RNA decay and haploinsufficiency. Using novel molecular analysis and nanopore technology, we demonstrated the pathogenesis of the rs794728589 (c.356+1G>A) splice variant in LMNA. This study highlights the importance of precise diagnostics in the clinical management and workup of cardiomyopathies.}, language = {en} } @article{SchanbacherHermannsLorenzetal.2023, author = {Schanbacher, Constanze and Hermanns, Heike M. and Lorenz, Kristina and Wajant, Harald and Lang, Isabell}, title = {Complement 1q/tumor necrosis factor-related proteins (CTRPs): structure, receptors and signaling}, series = {Biomedicines}, volume = {11}, journal = {Biomedicines}, number = {2}, issn = {2227-9059}, doi = {10.3390/biomedicines11020559}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304136}, year = {2023}, abstract = {Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction.}, language = {en} } @article{GmachBathePetersTeluguetal.2022, author = {Gmach, Philipp and Bathe-Peters, Marc and Telugu, Narasimha and Miller, Duncan C. and Annibale, Paolo}, title = {Fluorescence spectroscopy of low-level endogenous β-adrenergic receptor expression at the plasma membrane of differentiating human iPSC-derived cardiomyocytes}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms231810405}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288277}, year = {2022}, abstract = {The potential of human-induced pluripotent stem cells (hiPSCs) to be differentiated into cardiomyocytes (CMs) mimicking adult CMs functional morphology, marker genes and signaling characteristics has been investigated since over a decade. The evolution of the membrane localization of CM-specific G protein-coupled receptors throughout differentiation has received, however, only limited attention to date. We employ here advanced fluorescent spectroscopy, namely linescan Fluorescence Correlation Spectroscopy (FCS), to observe how the plasma membrane abundance of the β\(_1\)- and β\(_2\)-adrenergic receptors (β\(_{1/2}\)-ARs), labelled using a bright and photostable fluorescent antagonist, evolves during the long-term monolayer culture of hiPSC-derived CMs. We compare it to the kinetics of observed mRNA levels in wildtype (WT) hiPSCs and in two CRISPR/Cas9 knock-in clones. We conduct these observations against the backdrop of our recent report of cell-to-cell expression variability, as well as of the subcellular localization heterogeneity of β-ARs in adult CMs.}, language = {en} } @article{DjelićBorozanDimitrijevićSrećkovićetal.2022, author = {Djelić, Ninoslav and Borozan, Sunčica and Dimitrijević-Srećković, Vesna and Pajović, Nevena and Mirilović, Milorad and Stopper, Helga and Stanimirović, Zoran}, title = {Oxidative stress and DNA damage in peripheral blood mononuclear cells from normal, obese, prediabetic and diabetic persons exposed to thyroid hormone in vitro}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169072}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285988}, year = {2022}, abstract = {Diabetes, a chronic group of medical disorders characterized byhyperglycemia, has become a global pandemic. Some hormones may influence the course and outcome of diabetes, especially if they potentiate the formation of reactive oxygen species (ROS). There is a close relationship between thyroid disorders and diabetes. The main objective of this investigation was to find out whether peripheral blood mononuclear cells (PBMCs) are more prone to DNA damage by triiodothyronine (T\(_3\)) (0.1, 1 and 10 μM) at various stages of progression through diabetes (obese, prediabetics, and type 2 diabetes mellitus—T2DM persons). In addition, some biochemical parameters of oxidative stress (catalase-CAT, thiobarbituric acid reactive substances—TBARS) and lactate dehydrogenase (LDH) were evaluated. PBMCs from prediabetic and diabetic patients exhibited increased sensitivity for T\(_3\) regarding elevated level of DNA damage, inhibition of catalase, and increase of TBARS and LDH. PBMCs from obese patients reacted in the same manner, except for DNA damage. The results of this study should contribute to a better understanding of the role of thyroid hormones in the progression of T2DM.}, language = {en} } @phdthesis{Nemec2023, author = {Nemec, Katarina}, title = {Modulation of parathyroid hormone 1 receptor (PTH1R) signaling by receptor activity-modifying proteins (RAMPs)}, doi = {10.25972/OPUS-28858}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288588}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The receptor activity-modifying proteins (RAMPs) are ubiquitously expressed membrane proteins that interact with several G protein-coupled receptors (GPCRs), the largest and pharmacologically most important family of cell surface receptors. RAMPs can regulate GPCR function in terms of ligand-binding, G-protein coupling, downstream signaling, trafficking, and recycling. The integrity of their interactions translates to many physiological functions or pathological conditions. Regardless of numerous reports on its essential importance for cell biology and pivotal role in (patho-)physiology, the molecular mechanism of how RAMPs modulate GPCR activation remained largely elusive. This work presents new insights that add to the common understanding of the allosteric regulation of receptor activation and will help interpret how accessory proteins - RAMPs - modulate activation dynamics and how this affects the fundamental aspects of cellular signaling. Using a prototypical class B GPCR, the parathyroid hormone 1 receptor (PTH1R) in the form of advanced genetically encoded optical biosensors, I examined RAMP's impact on the PTH1R activation and signaling in intact cells. A panel of single-cell FRET and confocal microscopy experiments as well canonical and non-canonical functional assays were performed to get a holistic picture of the signaling initiation and transduction of that clinically and therapeutically relevant GPCR. Finally, structural modeling was performed to add molecular mechanistic details to that novel art of modulation. I describe here that RAMP2 acts as a specific allosteric modulator of PTH1R, shifting PTH1R to a unique pre-activated state that permits faster activation in a ligand-specific manner. Moreover, RAMP2 modulates PTH1R downstream signaling in an agonist-dependent manner, most notably increasing the PTH-mediated Gi3 signaling sensitivity and kinetics of cAMP accumulation. Additionally, RAMP2 increases PTH- and PTHrP-triggered β-arrestin2 recruitment to PTH1R and modulates cytosolic ERK1/2 phosphorylation. Structural homology modeling shows that structural motifs governing GPCR-RAMP interaction originate in allosteric hotspots and rationalize functional modulation. Moreover, to interpret the broader role of RAMP's modulation in GPCRs pharmacology, different fluorescent tools to investigate RAMP's spatial organization were developed, and novel conformational biosensors for class B GPCRs were engineered. Lastly, a high throughput assay is proposed and prototyped to expand the repertoire of RAMPs or other membrane protein interactors. These data uncover the critical role of RAMPs in GPCR activation and signaling and set up a novel platform for studying GPCR modulation. Furthermore, these insights may provide a new venue for precise modulation of GPCR function and advanced drug design.}, subject = {G-Protein gekoppelter Rezeptor}, language = {en} } @article{SchanbacherBieberReindersetal.2022, author = {Schanbacher, Constanze and Bieber, Michael and Reinders, Yvonne and Cherpokova, Deya and Teichert, Christina and Nieswandt, Bernhard and Sickmann, Albert and Kleinschnitz, Christoph and Langhauser, Friederike and Lorenz, Kristina}, title = {ERK1/2 activity is critical for the outcome of ischemic stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {2}, issn = {1422-0067}, doi = {10.3390/ijms23020706}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283991}, year = {2022}, abstract = {Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2\(^{wt}\)) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood-brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIP\(^{wt}\)) and its phosphorylation-deficient mutant RKIP\(^{S153A}\), known inhibitors of the ERK1/2 signaling cascade. RKIP\(^{wt}\) and RKIP\(^{S153A}\) attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.}, language = {en} } @article{BauerMallyLiedtke2021, author = {Bauer, Benedikt and Mally, Angela and Liedtke, Daniel}, title = {Zebrafish embryos and larvae as alternative animal models for toxicity testing}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {24}, issn = {1422-0067}, doi = {10.3390/ijms222413417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284225}, year = {2021}, abstract = {Prerequisite to any biological laboratory assay employing living animals is consideration about its necessity, feasibility, ethics and the potential harm caused during an experiment. The imperative of these thoughts has led to the formulation of the 3R-principle, which today is a pivotal scientific standard of animal experimentation worldwide. The rising amount of laboratory investigations utilizing living animals throughout the last decades, either for regulatory concerns or for basic science, demands the development of alternative methods in accordance with 3R to help reduce experiments in mammals. This demand has resulted in investigation of additional vertebrate species displaying favourable biological properties. One prominent species among these is the zebrafish (Danio rerio), as these small laboratory ray-finned fish are well established in science today and feature outstanding biological characteristics. In this review, we highlight the advantages and general prerequisites of zebrafish embryos and larvae before free-feeding stages for toxicological testing, with a particular focus on cardio-, neuro, hepato- and nephrotoxicity. Furthermore, we discuss toxicokinetics, current advances in utilizing zebrafish for organ toxicity testing and highlight how advanced laboratory methods (such as automation, advanced imaging and genetic techniques) can refine future toxicological studies in this species.}, language = {en} } @article{SedaghatHamedaniRebsElBattrawyetal.2021, author = {Sedaghat-Hamedani, Farbod and Rebs, Sabine and El-Battrawy, Ibrahim and Chasan, Safak and Krause, Tobias and Haas, Jan and Zhong, Rujia and Liao, Zhenxing and Xu, Qiang and Zhou, Xiaobo and Akin, Ibrahim and Zitron, Edgar and Frey, Norbert and Streckfuss-B{\"o}meke, Katrin and Kayvanpour, Elham}, title = {Identification of SCN5a p.C335R variant in a large family with dilated cardiomyopathy and conduction disease}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {23}, issn = {1422-0067}, doi = {10.3390/ijms222312990}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284442}, year = {2021}, abstract = {Introduction: Familial dilated cardiomyopathy (DCM) is clinically variable and has been associated with mutations in more than 50 genes. Rapid improvements in DNA sequencing have led to the identification of diverse rare variants with unknown significance (VUS), which underlines the importance of functional analyses. In this study, by investigating human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we evaluated the pathogenicity of the p.C335R sodium voltage-gated channel alpha subunit 5 (SCN5a) variant in a large family with familial DCM and conduction disease. Methods: A four-generation family with autosomal dominant familial DCM was investigated. Next-generation sequencing (NGS) was performed in all 16 family members. Clinical deep phenotyping, including endomyocardial biopsy, was performed. Skin biopsies from two patients and one healthy family member were used to generate human-induced pluripotent stem cells (iPSCs), which were then differentiated into cardiomyocytes. Patch-clamp analysis with Xenopus oocytes and iPSC-CMs were performed. Results: A SCN5a variant (c.1003T>C; p.C335R) could be detected in all family members with DCM or conduction disease. A novel truncating TTN variant (p.Ser24998LysfsTer28) could also be identified in two family members with DCM. Family members with the SCN5a variant (p.C335R) showed significantly longer PQ and QRS intervals and lower left ventricular ejection fractions (LV-EF). All four patients who received CRT-D were non-responders. Electrophysiological analysis with Xenopus oocytes showed a loss of function in SCN5a p.C335R. Na\(^+\) channel currents were also reduced in iPSC-CMs from DCM patients. Furthermore, iPSC-CM with compound heterozygosity (SCN5a p.C335R and TTNtv) showed significant dysregulation of sarcomere structures, which may be contributed to the severity of the disease and earlier onset of DCM. Conclusion: The SCN5a p.C335R variant is causing a loss of function of peak INa in patients with DCM and cardiac conduction disease. The co-existence of genetic variants in channels and structural genes (e.g., SCN5a p.C335R and TTNtv) increases the severity of the DCM phenotype.}, language = {en} } @article{WagnerSadekDybkovaetal.2021, author = {Wagner, Michael and Sadek, Mirna S. and Dybkova, Nataliya and Mason, Fleur E. and Klehr, Johann and Firneburg, Rebecca and Cachorro, Eleder and Richter, Kurt and Klapproth, Erik and Kuenzel, Stephan R. and Lorenz, Kristina and Heijman, Jordi and Dobrev, Dobromir and El-Armouche, Ali and Sossalla, Samuel and K{\"a}mmerer, Susanne}, title = {Cellular mechanisms of the anti-arrhythmic effect of cardiac PDE2 overexpression}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms22094816}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285888}, year = {2021}, abstract = {Background: Phosphodiesterases (PDE) critically regulate myocardial cAMP and cGMP levels. PDE2 is stimulated by cGMP to hydrolyze cAMP, mediating a negative crosstalk between both pathways. PDE2 upregulation in heart failure contributes to desensitization to β-adrenergic overstimulation. After isoprenaline (ISO) injections, PDE2 overexpressing mice (PDE2 OE) were protected against ventricular arrhythmia. Here, we investigate the mechanisms underlying the effects of PDE2 OE on susceptibility to arrhythmias. Methods: Cellular arrhythmia, ion currents, and Ca\(^{2+}\)-sparks were assessed in ventricular cardiomyocytes from PDE2 OE and WT littermates. Results: Under basal conditions, action potential (AP) morphology were similar in PDE2 OE and WT. ISO stimulation significantly increased the incidence of afterdepolarizations and spontaneous APs in WT, which was markedly reduced in PDE2 OE. The ISO-induced increase in I\(_{CaL}\) seen in WT was prevented in PDE2 OE. Moreover, the ISO-induced, Epac- and CaMKII-dependent increase in I\(_{NaL}\) and Ca\(^{2+}\)-spark frequency was blunted in PDE2 OE, while the effect of direct Epac activation was similar in both groups. Finally, PDE2 inhibition facilitated arrhythmic events in ex vivo perfused WT hearts after reperfusion injury. Conclusion: Higher PDE2 abundance protects against ISO-induced cardiac arrhythmia by preventing the Epac- and CaMKII-mediated increases of cellular triggers. Thus, activating myocardial PDE2 may represent a novel intracellular anti-arrhythmic therapeutic strategy in HF.}, language = {en} } @phdthesis{Ramge2023, author = {Ramge, Vanessa Magali}, title = {Untersuchung der Genotoxizit{\"a}t von Pyrrolizidinalkaloiden \(in\) \(vitro\) am Beispiel von Riddelliin und Lasiocarpin}, doi = {10.25972/OPUS-31979}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319793}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {PA sind nat{\"u}rliche Pflanzeninhaltsstoffe, die wegen ihres genotoxischen Potentials bekannt sind. Nach Applikation mikromolarer Konzentrationen k{\"o}nnen bei in vitro Untersuchungen von Leberzellen chromosomale Sch{\"a}den detektiert werden. PA stehen im Verdacht nach Aufnahme bei Menschen hepatotoxische und kanzerogene Wirkungen nach sich zu ziehen. In dieser Studie wurden Lasiocarpin und Riddelliin an der humanen Leberkarzinomzelllinie Huh6 auf Genotoxizit{\"a}t getestet. Die ausgew{\"a}hlten Methoden waren der MK-Test, der alkalische und der FPG Comet Assay und die γ-H2AX-F{\"a}rbung. In den Vorversuchen mit BaP und CPA wurde gezeigt, dass die Zellen durch Prodrugs genotoxisch gesch{\"a}digt werden. Zusammenfassend kann gesagt werden, dass Riddelliin und Lasiocarpin im MK-Test eine dosisabh{\"a}ngige, genotoxische Wirkung auf die Huh6 Zellen haben. Der Einfluss von Lasiocarpin war im MK-Test im Vergleich zum Einfluss von Riddelliin bei geringerer Konzentration detektierbar. Nach einer simultanen Behandlung der Huh6 Zellen mit verschiedenen PA kann konkludiert werden, dass keine signifikante Erh{\"o}hung an DNA-Sch{\"a}den im Vergleich zu Behandlungen mit den Einzelsubstanzen festgestellt werden konnte, was m{\"o}glicherweise auf eine Ersch{\"o}pfung der metabolischen Kapazit{\"a}t der Zellen zur{\"u}ckzuf{\"u}hren ist. Insgesamt ist es den Ergebnissen zufolge wahrscheinlich, dass die Entstehung von Crosslinks durch Lasiocarpin und Riddelliin eher eine Rolle in der Genotoxizit{\"a}tsinduktion auf Huh6 Zellen spielen als oxidativer Stress. Doppelstrangbr{\"u}che konnten nicht als sicherer Induktor von Genotoxizit{\"a}t identifiziert werden. Die Besonderheiten der Stoffwechselwege einzelner PA und die Spezifizierung einzelner, f{\"u}r die Metabolisierung relevanter Enzyme sollte in Zukunft Gegenstand der Forschung sein, um die kumulativen Wirkungen von PA besser nachzuvollziehen und die f{\"u}r den Menschen entstehenden Risiken durch die Aufnahme von PA konkretisieren zu k{\"o}nnen.}, subject = {Pyrrolizidinalkaloide}, language = {de} } @article{WinkelbeinerWandtEbertetal.2020, author = {Winkelbeiner, Nicola and Wandt, Viktoria K. and Ebert, Franziska and Lossow, Kristina and Bankoglu, Ezgi E. and Martin, Maximilian and Mangerich, Aswin and Stopper, Helga and Bornhorst, Julia and Kipp, Anna P. and Schwerdtle, Tanja}, title = {A multi-endpoint approach to base excision repair incision activity augmented by PARylation and DNA damage levels in mice: impact of sex and age}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms21186600}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285706}, year = {2020}, abstract = {Investigation of processes that contribute to the maintenance of genomic stability is one crucial factor in the attempt to understand mechanisms that facilitate ageing. The DNA damage response (DDR) and DNA repair mechanisms are crucial to safeguard the integrity of DNA and to prevent accumulation of persistent DNA damage. Among them, base excision repair (BER) plays a decisive role. BER is the major repair pathway for small oxidative base modifications and apurinic/apyrimidinic (AP) sites. We established a highly sensitive non-radioactive assay to measure BER incision activity in murine liver samples. Incision activity can be assessed towards the three DNA lesions 8-oxo-2'-deoxyguanosine (8-oxodG), 5-hydroxy-2'-deoxyuracil (5-OHdU), and an AP site analogue. We applied the established assay to murine livers of adult and old mice of both sexes. Furthermore, poly(ADP-ribosyl)ation (PARylation) was assessed, which is an important determinant in DDR and BER. Additionally, DNA damage levels were measured to examine the overall damage levels. No impact of ageing on the investigated endpoints in liver tissue were found. However, animal sex seems to be a significant impact factor, as evident by sex-dependent alterations in all endpoints investigated. Moreover, our results revealed interrelationships between the investigated endpoints indicative for the synergetic mode of action of the cellular DNA integrity maintaining machinery.}, language = {en} } @article{PaisdziorDimitriouSchoepeetal.2020, author = {Paisdzior, Sarah and Dimitriou, Ioanna Maria and Sch{\"o}pe, Paul Curtis and Annibale, Paolo and Scheerer, Patrick and Krude, Heiko and Lohse, Martin J. and Biebermann, Heike and K{\"u}hnen, Peter}, title = {Differential signaling profiles of MC4R mutations with three different ligands}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {4}, issn = {1422-0067}, doi = {10.3390/ijms21041224}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285108}, year = {2020}, abstract = {The melanocortin 4 receptor (MC4R) is a key player in hypothalamic weight regulation and energy expenditure as part of the leptin-melanocortin pathway. Mutations in this G protein coupled receptor (GPCR) are the most common cause for monogenetic obesity, which appears to be mediated by changes in the anorectic action of MC4R via G\(_S\)-dependent cyclic adenosine-monophosphate (cAMP) signaling as well as other signaling pathways. To study potential bias in the effects of MC4R mutations between the different signaling pathways, we investigated three major MC4R mutations: a G\(_S\) loss-of-function (S127L) and a G\(_S\) gain-of-function mutant (H158R), as well as the most common European single nucleotide polymorphism (V103I). We tested signaling of all four major G protein families plus extracellular regulated kinase (ERK) phosphorylation and β-arrestin2 recruitment, using the two endogenous agonists, α- and β-melanocyte stimulating hormone (MSH), along with a synthetic peptide agonist (NDP-α-MSH). The S127L mutation led to a full loss-of-function in all investigated pathways, whereas V103I and H158R were clearly biased towards the G\(_{q/11}\) pathway when challenged with the endogenous ligands. These results show that MC4R mutations can cause vastly different changes in the various MC4R signaling pathways and highlight the importance of a comprehensive characterization of receptor mutations.}, language = {en} } @phdthesis{Reiser2023, author = {Reiser, Pia}, title = {Das Adverse Outcome Pathway (AOP) - Konzept als Grundlage f{\"u}r die Entwicklung mechanistischer tierversuchsfreier Ans{\"a}tze: Eine Fallstudie {\"u}ber Nephrotoxizit{\"a}t initiiert durch rezeptorvermittelte Endozytose und lysosomalen Overload}, doi = {10.25972/OPUS-31804}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-318046}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Zur Verbesserung der Pr{\"u}fung und Risikobewertung der zunehmenden Menge von Chemikalien und Arzneimitteln, gilt es neue Alternativen in Form von in vitro Pr{\"u}fmethoden mit mechanistisch relevanten Endpunkten zu finden. Einen solchen Rahmen bietet das konzeptionelle Konstrukt des Adverse Outcome Pathway (AOP)- Konzepts. Es erzeugt auf der Basis bestehenden Wissens einen mechanistischen und kausalen Zusammenhang mit Hilfe von mehreren Schl{\"u}sselereignissen (Key Event [KE]) zwischen einem initierenden molekularen Ereignis (Molecular Initiating Event [MIE]) und einem adversen Effekt (Adverse Outcome [AO]) auf biologischer Ebene. Im Rahmen dieser Arbeit wurde der AOP „Rezeptorvermittelte Endozytose und lysosomaler Overload f{\"u}hren zu Nephrotoxizit{\"a}t" am Zellkulturmodell proximaler Nierentubuluszellen weiterentwickelt. Es wurden in vitro Assays f{\"u}r die Zelllinien RPTEC/TERT1 (Mensch) und NRK-52 E (Ratte) f{\"u}r jedes KE etabliert. In dem AOP wird die Initiierung der Sch{\"a}digung des Nierengewebes durch rezeptorvermittelte Endozytose der Substanzen (MIE) mit folgendem lysosomalem Overload (KE 1) und der lysosomalen Membranruptur (KE 2) beschrieben. Es kommt zur Zellsch{\"a}digung (KE 3) und endet mit einem Schaden auf Organebene (AO). F{\"u}r KE 1 erfolgte die Visualisierung des lysosomal-assoziierten Membranproteins (lysosomal-associated Membranprotein [LAMP]) und in KE 2 die Darstellung der Protease Cathepsin D (CTSD) mittels Immunfluoreszenz. F{\"u}r KE 3 wurden spezifische Toxizit{\"a}tsdaten der Testsubstanzen mit dem CellTiter-Glo® Lumineszenz-Zellviabilit{\"a}tstest generiert. Gew{\"a}hlte Stressoren f{\"u}r den AOP war die Gruppe der Polymyxin-Antibiotika (Polymyxin B, Colistin, Polymyxin B Nonapeptid), das Aminoglykosid Gentamicin, das Glykopeptid Vancomycin sowie Cadmiumchlorid. In Zusammenschau der Ergebnisse der drei KEs war die Rangfolge der Auswirkungen der drei Polymyxin-Derivate {\"u}ber alle KEs konsistent. Polymyxin B erwies sich als aktivste Substanz, w{\"a}hrend Polymyxin B Nonapeptid die geringsten Auswirkungen zeigte. Als Ausblick in weiterf{\"u}hrenden Analysen der Arbeitsgruppe konnten bei Cadmiumchlorid trotz einer signifikanten Zytotoxizit{\"a}t (KE 3) nur geringe Auswirkungen in der LAMPExpression (KE 1) aufgezeigt werden. Des Weiteren erfolgte die Erstellung von Response-Response-Analysen, um mittels vorgeschalteter Schl{\"u}sselereignisse nachfolgende Effekte vorhersagen zu k{\"o}nnen. Projektpartner der Universit{\"a}t Utrecht entwickelten dar{\"u}ber hinaus eine quantitative in vitro in vivo Extrapolation (QIVIVE) mittels eines physiologisch basierten pharmakokinetischen (PBPK) Modells.}, subject = {Nephrotoxizit{\"a}t}, language = {de} } @article{BreitenbachLorenzDandekar2019, author = {Breitenbach, Tim and Lorenz, Kristina and Dandekar, Thomas}, title = {How to steer and control ERK and the ERK signaling cascade exemplified by looking at cardiac insufficiency}, series = {International Journal of Molecular Sciences}, volume = {20}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms20092179}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285164}, year = {2019}, abstract = {Mathematical optimization framework allows the identification of certain nodes within a signaling network. In this work, we analyzed the complex extracellular-signal-regulated kinase 1 and 2 (ERK1/2) cascade in cardiomyocytes using the framework to find efficient adjustment screws for this cascade that is important for cardiomyocyte survival and maladaptive heart muscle growth. We modeled optimal pharmacological intervention points that are beneficial for the heart, but avoid the occurrence of a maladaptive ERK1/2 modification, the autophosphorylation of ERK at threonine 188 (ERK\(^{Thr188}\) phosphorylation), which causes cardiac hypertrophy. For this purpose, a network of a cardiomyocyte that was fitted to experimental data was equipped with external stimuli that model the pharmacological intervention points. Specifically, two situations were considered. In the first one, the cardiomyocyte was driven to a desired expression level with different treatment strategies. These strategies were quantified with respect to beneficial effects and maleficent side effects and then which one is the best treatment strategy was evaluated. In the second situation, it was shown how to model constitutively activated pathways and how to identify drug targets to obtain a desired activity level that is associated with a healthy state and in contrast to the maleficent expression pattern caused by the constitutively activated pathway. An implementation of the algorithms used for the calculations is also presented in this paper, which simplifies the application of the presented framework for drug targeting, optimal drug combinations and the systematic and automatic search for pharmacological intervention points. The codes were designed such that they can be combined with any mathematical model given by ordinary differential equations.}, language = {en} } @article{RietjensDussortGuentheretal.2018, author = {Rietjens, Ivonne M. C. M. and Dussort, P. and G{\"u}nther, Helmut and Hanlon, Paul and Honda, Hiroshi and Mally, Angela and O'Hagan, Sue and Scholz, Gabriele and Seidel, Albrecht and Swenberg, James and Teeguarden, Justin and Eisenbrand, Gerhard}, title = {Exposure assessment of process-related contaminants in food by biomarker monitoring}, series = {Archives of Toxicology}, volume = {92}, journal = {Archives of Toxicology}, number = {1}, doi = {10.1007/s00204-017-2143-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226268}, pages = {15-40}, year = {2018}, abstract = {Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.}, language = {en} } @article{SpinaciLambertucciBuccionietal.2022, author = {Spinaci, Andrea and Lambertucci, Catia and Buccioni, Michela and Dal Ben, Diego and Graiff, Claudia and Barbalace, Maria Cristina and Hrelia, Silvana and Angeloni, Cristina and Tayebati, Seyed Khosrow and Ubaldi, Massimo and Masi, Alessio and Klotz, Karl-Norbert and Volpini, Rosaria and Marucci, Gabriella}, title = {A\(_{2A}\) adenosine receptor antagonists: are triazolotriazine and purine scaffolds interchangeable?}, series = {Molecules}, volume = {27}, journal = {Molecules}, number = {8}, issn = {1420-3049}, doi = {10.3390/molecules27082386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270618}, year = {2022}, abstract = {The A\(_{2A}\) adenosine receptor (A\(_{2A}\)AR) is one of the four subtypes activated by nucleoside adenosine, and the molecules able to selectively counteract its action are attractive tools for neurodegenerative disorders. In order to find novel A\(_{2A}\)AR ligands, two series of compounds based on purine and triazolotriazine scaffolds were synthesized and tested at ARs. Compound 13 was also tested in an in vitro model of neuroinflammation. Some compounds were found to possess high affinity for A\(_{2A}\)AR, and it was observed that compound 13 exerted anti-inflammatory properties in microglial cells. Molecular modeling studies results were in good agreement with the binding affinity data and underlined that triazolotriazine and purine scaffolds are interchangeable only when 5- and 2-positions of the triazolotriazine moiety (corresponding to the purine 2- and 8-positions) are substituted.}, language = {en} } @article{DekantLangerLuppetal.2021, author = {Dekant, Raphael and Langer, Michael and Lupp, Maria and Adaku Chilaka, Cynthia and Mally, Angela}, title = {In vitro and in vivo analysis of ochratoxin A-derived glucuronides and mercapturic acids as biomarkers of exposure}, series = {Toxins}, volume = {13}, journal = {Toxins}, number = {8}, issn = {2072-6651}, doi = {10.3390/toxins13080587}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245146}, year = {2021}, abstract = {Ochratoxin A (OTA) is a widespread food contaminant, with exposure estimated to range from 0.64 to 17.79 ng/kg body weight (bw) for average consumers and from 2.40 to 51.69 ng/kg bw per day for high consumers. Current exposure estimates are, however, associated with considerable uncertainty. While biomarker-based approaches may contribute to improved exposure assessment, there is yet insufficient data on urinary metabolites of OTA and their relation to external dose to allow reliable estimates of daily intake. This study was designed to assess potential species differences in phase II biotransformation in vitro and to establish a correlation between urinary OTA-derived glucuronides and mercapturic acids and external exposure in rats in vivo. In vitro analyses of OTA metabolism using the liver S9 of rats, humans, rabbits and minipigs confirmed formation of an OTA glucuronide but provided no evidence for the formation of OTA-derived mercapturic acids to support their use as biomarkers. Similarly, OTA-derived mercapturic acids were not detected in urine of rats repeatedly dosed with OTA, while indirect analysis using enzymatic hydrolysis of the urine samples prior to LC-MS/MS established a linear relationship between urinary glucuronide excretion and OTA exposure. These results support OTA-derived glucuronides but not mercapturic acids as metabolites suitable for biomonitoring.}, language = {en} } @article{ChilakaObidiegwuChilakaetal.2022, author = {Chilaka, Cynthia Adaku and Obidiegwu, Jude Ejikeme and Chilaka, Augusta Chinenye and Atanda, Olusegun Oladimeji and Mally, Angela}, title = {Mycotoxin regulatory status in Africa: a decade of weak institutional efforts}, series = {Toxins}, volume = {14}, journal = {Toxins}, number = {7}, issn = {2072-6651}, doi = {10.3390/toxins14070442}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278941}, year = {2022}, abstract = {Food safety problems are a major hindrance to achieving food security, trade, and healthy living in Africa. Fungi and their secondary metabolites, known as mycotoxins, represent an important concern in this regard. Attempts such as agricultural, storage, and processing practices, and creation of awareness to tackle the menace of fungi and mycotoxins have yielded measurable outcomes especially in developed countries, where there are comprehensive mycotoxin legislations and enforcement schemes. Conversely, most African countries do not have mycotoxin regulatory limits and even when available, are only applied for international trade. Factors such as food insecurity, public ignorance, climate change, poor infrastructure, poor research funding, incorrect prioritization of resources, and nonchalant attitudes that exist among governmental organisations and other stakeholders further complicate the situation. In the present review, we discuss the status of mycotoxin regulation in Africa, with emphasis on the impact of weak mycotoxin legislations and enforcement on African trade, agriculture, and health. Furthermore, we discuss the factors limiting the establishment and control of mycotoxins in the region.}, language = {en} } @article{SalingerHuLiuetal.2018, author = {Salinger, Tim and Hu, Kai and Liu, Dan and Taleh, Scharoch and Herrmann, Sebastian and Oder, Daniel and Gensler, Daniel and M{\"u}ntze, Jonas and Ertl, Georg and Lorenz, Kristina and Frantz, Stefan and Weidemann, Frank and Nordbeck, Peter}, title = {Association between Comorbidities and Progression of Transvalvular Pressure Gradients in Patients with Moderate and Severe Aortic Valve Stenosis}, series = {Cardiology Research and Practice}, journal = {Cardiology Research and Practice}, doi = {10.1155/2018/3713897}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227291}, pages = {3713897, 1-7}, year = {2018}, abstract = {Background. Fast progression of the transaortic mean gradient (P-mean) is relevant for clinical decision making of valve replacement in patients with moderate and severe aortic stenosis (AS) patients. However, there is currently little knowledge regarding the determinants affecting progression of transvalvular gradient in AS patients. Methods. This monocentric retrospective study included consecutive patients presenting with at least two transthoracic echocardiography examinations covering a time interval of one year or more between April 2006 and February 2016 and diagnosed as moderate or severe aortic stenosis at the final echocardiographic examination. Laboratory parameters, medication, and prevalence of eight known cardiac comorbidities and risk factors (hypertension, diabetes, coronary heart disease, peripheral artery occlusive disease, cerebrovascular disease, renal dysfunction, body mass index >= 30 Kg/m(2), and history of smoking) were analyzed. Patients were divided into slow (P-mean < 5 mmHg/year) or fast (P-mean >= 5 mmHg/year) progression groups. Results. A total of 402 patients (mean age 78 +/- 9.4 years, 58\% males) were included in the study. Mean follow-up duration was 3.4 +/- 1.9 years. The average number of cardiac comorbidities and risk factors was 3.1 +/- 1.6. Average number of cardiac comorbidities and risk factors was higher in patients in slow progression group than in fast progression group (3.3 +/- 1.5 vs 2.9 +/- 1.7; P = 0.036). Patients in slow progression group had more often coronary heart disease (49.2\% vs 33.6\%; P = 0.003) compared to patients in fast progression group. LDL-cholesterol values were lower in the slow progression group (100 +/- 32.6 mg/dl vs 110.8 +/- 36.6 mg/dl; P = 0.005). Conclusion. These findings suggest that disease progression of aortic valve stenosis is faster in patients with fewer cardiac comorbidities and risk factors, especially if they do not have coronary heart disease. Further prospective studies are warranted to investigate the outcome of patients with slow versus fast progression of transvalvular gradient with regards to comorbidities and risk factors.}, language = {en} } @article{TolstikAliGuoetal.2022, author = {Tolstik, Elen and Ali, Nairveen and Guo, Shuxia and Ebersbach, Paul and M{\"o}llmann, Dorothe and Arias-Loza, Paula and Dierks, Johann and Schuler, Irina and Freier, Erik and Debus, J{\"o}rg and Baba, Hideo A. and Nordbeck, Peter and Bocklitz, Thomas and Lorenz, Kristina}, title = {CARS imaging advances early diagnosis of cardiac manifestation of Fabry disease}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {10}, issn = {1422-0067}, doi = {10.3390/ijms23105345}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284427}, year = {2022}, abstract = {Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient's prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90-96\%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD.}, language = {en} } @phdthesis{Kaestner2023, author = {Kaestner, Alexandra Annika Nadine}, title = {Charakterisierung pharmakologischer Phosphoglykolatphosphatase-Inhibitoren}, doi = {10.25972/OPUS-27239}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-272394}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In dieser Arbeit geht es um die Phosphoglykolatphosphatase (PGP), die als Phosphatase vom Haloazid Dehalogenase-Typ (HAD-Phosphatase) zu der ubiquit{\"a}r vorkommenden Superfamilie der HAD-Hydrolasen geh{\"o}rt. In der Literatur ist eine in vitro Phosphatase-Aktivit{\"a}t gegen{\"u}ber 2-Phospho-L-Laktat (2PL), 4-Phospho-D-Erythronat (4PE), Phosphoglykolat (PG) und Glycerol-3-Phosphat (G3P) beschrieben. 2PL und 4PE entstehen in Nebenreaktionen w{\"a}hrend der Glykolyse und hemmen bei Akkumulation die Glykolyse bzw. den Pentosephosphatweg. PG kann auch in einer Nebenreaktion w{\"a}hrend der Glykolyse oder im Rahmen der Reparatur von oxidativen DNA-Sch{\"a}den entstehen. G3P entsteht aus Dihydroxyacetonphosphat und bildet das Kohlenhydratger{\"u}st der Triacylglyceride (TAG). Zellul{\"a}re Studien konnten Hinweise auf die Regulierung des epidermalen wachstumsfaktor-(EGF-)induzierten Zytoskelettumbaus durch die PGP liefern und die Untersuchung von M{\"a}usen mit PGP-Inaktivierung zeigte einen Einfluss auf die Zellproliferation und embryonale Entwicklung. Die Regulation der PGP-Expression f{\"u}hrte zu Ver{\"a}nderungen im Kohlenhydrat- und Fettstoffwechsel. Die Untersuchung der PGP-Funktionen erfolgte bislang ausschließlich mit genetischen Ans{\"a}tzen. Aufgrund von m{\"o}glichen Kompensationsmechanismen und Off-Target-Effekten m{\"u}ssen genetische und pharmakologische Methoden als sich erg{\"a}nzende Ans{\"a}tze verstanden werden. Um die Funktionen der PGP besser zu verstehen, fokussiert sich die vorliegende Arbeit auf die gezielte pharmakologische PGP-Inhibition. In Vorarbeiten wurden 41.000 Molek{\"u}le gescreent und f{\"u}nf potentielle Inhibitoren identifiziert. Ziele dieser Arbeit waren zum einen die Implementierung der Inhibitor \# 1-Behandlung in der Zellkultur, zum anderen die Charakterisierung der PGP-Hemmung durch Inhibitor \# 48 und die Durchf{\"u}hrung erster Selektivit{\"a}tstestungen mit Inhibitor \# 48. Zusammenfassend kann festgehalten werden, dass Inhibitor \# 1 in der Lage ist, die endogene PGP in Zelllysaten der murinen spermatogonialen Zelllinie (GC1) zu hemmen. Unter bestimmten Bedingungen f{\"u}hrte die Inhibitor \# 1-Behandlung der GC1-Zellen zur Hemmung der PGP. Erste Analysen zellul{\"a}rer Inhibitoreffekte konnten eine Steigerung der TAG-Konzentration in behandelten GC1-Zellen nachweisen. Die PGP-Hemmung durch Inhibitor \# 48 wurde als unkompetitive Inhibition charakterisiert und es zeigten sich keine relevanten Inhibitoreffekte auf die HAD-Phosphatasen Magnesium-abh{\"a}ngige Phosphatase 1 (MDP1), Lysin-Histidin-Pyrophosphat-Phosphatase (LHPP) und Polynukleotidase 5'-Kinase/3'-Phosphatase (PnkP). Dagegen konnte eine Aktivit{\"a}tssteigerung von Phospho 2 beobachtet werden. Die vorliegende Arbeit liefert somit erste Erkenntnisse {\"u}ber die Anwendung des PGP-Inhibitors \# 1 in der Zellkultur und schafft die Grundlage f{\"u}r nachfolgende Untersuchungen mit Inhibitor \# 48. Weitere Experimente sind notwendig, die die Inhibitorbehandlung in der Zellkultur optimieren und die Selektivit{\"a}t weiter charakterisieren, um mithilfe der Inhibitoren neue Erkenntnisse {\"u}ber die physiologische und pathophysiologische Rolle der PGP gewinnen zu k{\"o}nnen.}, subject = {Phosphoglykolatphosphatase}, language = {de} } @phdthesis{Lotz2023, author = {Lotz, Arietta Lucia}, title = {Eine in-vitro-Untersuchung des Einflusses von Angiotensin II und Sulforaphan auf die Modulation des oxidativen Stresses anhand der NFκB- und Nrf 2-Aktivit{\"a}t in LLC-PK1 Zellen}, doi = {10.25972/OPUS-31057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-310573}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Ausgangspunkt der Arbeit ist die klinische Beobachtung, dass Patienten mit arteriellem Hypertonus vermehrt Nierenerkrankungen entwickeln. Dabei zeigten sich in der Subgruppenanalyse vor allem erh{\"o}hte Inzidenzen der Niereninsuffizienz und der Nierenzellkarzinome. Als m{\"o}glicher Pathomechanismus steht das Renin-Angiotensin-Aldosteron-System (RAAS-System) im Vordergrund. Dabei wird postuliert, dass erh{\"o}hte Angiotensin II-Spiegel zu einem Missverh{\"a}ltnis zwischen den Oxidations- und Reduktionspartnern in der Zelle f{\"u}hren, wodurch sich das oxidative Potential der Zelle {\"a}ndert, und es vermehrt zur Bildung von Radikalen (ROS) kommt, die meist ungepaarte Elektronen in der Valenzschale oder instabile Verbindungen enthalten, wodurch sie besonders reaktionsfreudig mit Proteinen, Lipiden, Kohlenhydraten und auch der DNA interagieren. In der Folge kommt es zu DNA-Ver{\"a}nderungen in Form von Doppel- oder Einzelstrangbr{\"u}chen, DNA-Protein-Crosslinks, Basenmodifikationen und Basenverlusten, wodurch sich ein hohes mutagenes Potential ergibt. Dieser Ansatz zur Pathophysiologie best{\"a}tigte sich auch an den hier verwendeten porkinen Nierenzellmodell. Dabei zeigte sich nicht nur eine Ver{\"a}nderung der genomischen Stabilit{\"a}t nach Exposition gegen{\"u}ber erh{\"o}hten Angiotensin II-Spiegeln, sondern auch eine Ver{\"a}nderung der DNA in Abh{\"a}ngigkeit von der Expositionsdauer der Zellen. Als n{\"a}chster Schritt konnte die Modulation der Transkriptionsfaktoren Nrf 2 und NF-κB durch die Behandlung mit Angiotensin II und Sulforaphan nachgewiesen werden. Bei der Behandlung mit Sulforaphan ließ sich eine Nrf 2-Induktion nachweisen mit vermehrter Expression von antioxidativen und detoxifizierender Enzyme. Weiterhin zeigte sich im Rahmen der Behandlung erniedrigte NF-κB-Level. Bei der Modulation durch Angiotensin II stellte sich zun{\"a}chst ein signifikant erniedrigtes Level an Nrf 2 in den Zellen dar, das im Verlauf von 24 Stunden anstieg und konsekutiv ließ sich eine maximale Proteinexpression zwischen 24 und 48 Stunden messen. Weiterhin wiesen die Zellen, die mit Angiotensin II behandelt wurden, erh{\"o}hte NF-κB Mengen/Zelle auf. Zudem zeigte sich der Einfluss erh{\"o}hter Glucosekonzentrationen auf eine progrediente genomischen Instabilit{\"a}t, die Ver{\"a}nderung der Transkriptionsfaktoren mit erh{\"o}hter Nrf 2-Induktion und mit Deregulation des Transkriptionsfaktors NF-κB wurde durch die Behandlung mit Sulforaphan nachgewiesen. Aufgrund dieser Rolle in der Tumorgenese sind mittlerweile einige Bestandteile des NF-κB- und des Nrf 2-Signalweges und auch Nrf 2-Aktivatoren wie Sulforaphan wichtige Zielstrukturen f{\"u}r die Entwicklung neuer Medikamente und Therapieoptionen. Besonders zeigt sich hierbei die Wichtigkeit bei Diabetes induzierten kardiovaskul{\"a}ren Folgesch{\"a}den mit fr{\"u}hzeitiger medikament{\"o}ser Behandlung.}, subject = {Oxidativer Stress}, language = {de} } @article{LorenzRosner2022, author = {Lorenz, Kristina and Rosner, Marsha Rich}, title = {Harnessing RKIP to combat heart disease and cancer}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {4}, issn = {2072-6694}, doi = {10.3390/cancers14040867}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262185}, year = {2022}, abstract = {Cancer and heart disease are leading causes of morbidity and mortality worldwide. These diseases have common risk factors, common molecular signaling pathways that are central to their pathogenesis, and even some disease phenotypes that are interdependent. Thus, a detailed understanding of common regulators is critical for the development of new and synergistic therapeutic strategies. The Raf kinase inhibitory protein (RKIP) is a regulator of the cellular kinome that functions to maintain cellular robustness and prevent the progression of diseases including heart disease and cancer. Two of the key signaling pathways controlled by RKIP are the β-adrenergic receptor (βAR) signaling to protein kinase A (PKA), particularly in the heart, and the MAP kinase cascade Raf/MEK/ERK1/2 that regulates multiple diseases. The goal of this review is to discuss how we can leverage RKIP to suppress cancer without incurring deleterious effects on the heart. Specifically, we discuss: (1) How RKIP functions to either suppress or activate βAR (PKA) and ERK1/2 signaling; (2) How we can prevent cancer-promoting kinase signaling while at the same time avoiding cardiotoxicity.}, language = {en} } @article{JarzinaDiFioreEllingeretal.2022, author = {Jarzina, Sebastian and Di Fiore, Stefano and Ellinger, Bernhard and Reiser, Pia and Frank, Sabrina and Glaser, Markus and Wu, Jiaqing and Taverne, Femke J. and Kramer, Nynke I. and Mally, Angela}, title = {Application of the adverse outcome pathway concept to in vitro nephrotoxicity assessment: kidney injury due to receptor-mediated endocytosis and lysosomal overload as a case study}, series = {Frontiers in Toxicology}, volume = {4}, journal = {Frontiers in Toxicology}, issn = {2673-3080}, doi = {10.3389/ftox.2022.864441}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284796}, year = {2022}, abstract = {Application of adverse outcome pathways (AOP) and integration of quantitative in vitro to in vivo extrapolation (QIVIVE) may support the paradigm shift in toxicity testing to move from apical endpoints in test animals to more mechanism-based in vitro assays. Here, we developed an AOP of proximal tubule injury linking a molecular initiating event (MIE) to a cascade of key events (KEs) leading to lysosomal overload and ultimately to cell death. This AOP was used as a case study to adopt the AOP concept for systemic toxicity testing and risk assessment based on in vitro data. In this AOP, nephrotoxicity is thought to result from receptor-mediated endocytosis (MIE) of the chemical stressor, disturbance of lysosomal function (KE1), and lysosomal disruption (KE2) associated with release of reactive oxygen species and cytotoxic lysosomal enzymes that induce cell death (KE3). Based on this mechanistic framework, in vitro readouts reflecting each KE were identified. Utilizing polymyxin antibiotics as chemical stressors for this AOP, the dose-response for each in vitro endpoint was recorded in proximal tubule cells from rat (NRK-52E) and human (RPTEC/TERT1) in order to (1) experimentally support the sequence of key events (KEs), to (2) establish quantitative relationships between KEs as a basis for prediction of downstream KEs based on in vitro data reflecting early KEs and to (3) derive suitable in vitro points of departure for human risk assessment. Time-resolved analysis was used to support the temporal sequence of events within this AOP. Quantitative response-response relationships between KEs established from in vitro data on polymyxin B were successfully used to predict in vitro toxicity of other polymyxin derivatives. Finally, a physiologically based kinetic (PBK) model was utilized to transform in vitro effect concentrations to a human equivalent dose for polymyxin B. The predicted in vivo effective doses were in the range of therapeutic doses known to be associated with a risk for nephrotoxicity. Taken together, these data provide proof-of-concept for the feasibility of in vitro based risk assessment through integration of mechanistic endpoints and reverse toxicokinetic modelling.}, language = {en} } @article{MallyJarzina2022, author = {Mally, Angela and Jarzina, Sebastian}, title = {Mapping adverse outcome pathways for kidney injury as a basis for the development of mechanism-based animal-sparing approaches to assessment of nephrotoxicity}, series = {Frontiers in Toxicology}, volume = {4}, journal = {Frontiers in Toxicology}, issn = {2673-3080}, doi = {10.3389/ftox.2022.863643}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284405}, year = {2022}, abstract = {In line with recent OECD activities on the use of AOPs in developing Integrated Approaches to Testing and Assessment (IATAs), it is expected that systematic mapping of AOPs leading to systemic toxicity may provide a mechanistic framework for the development and implementation of mechanism-based in vitro endpoints. These may form part of an integrated testing strategy to reduce the need for repeated dose toxicity studies. Focusing on kidney and in particular the proximal tubule epithelium as a key target site of chemical-induced injury, the overall aim of this work is to contribute to building a network of AOPs leading to nephrotoxicity. Current mechanistic understanding of kidney injury initiated by 1) inhibition of mitochondrial DNA polymerase γ (mtDNA Polγ), 2) receptor mediated endocytosis and lysosomal overload, and 3) covalent protein binding, which all present fairly well established, common mechanisms by which certain chemicals or drugs may cause nephrotoxicity, is presented and systematically captured in a formal description of AOPs in line with the OECD AOP development programme and in accordance with the harmonized terminology provided by the Collaborative Adverse Outcome Pathway Wiki. The relative level of confidence in the established AOPs is assessed based on evolved Bradford-Hill weight of evidence considerations of biological plausibility, essentiality and empirical support (temporal and dose-response concordance).}, language = {en} } @article{MaurerHartmannArgyriouetal.2022, author = {Maurer, Wiebke and Hartmann, Nico and Argyriou, Loukas and Sossalla, Samuel and Streckfuss-B{\"o}meke, Katrin}, title = {Generation of homozygous Na\(_{v}\)1.8 knock-out iPSC lines by CRISPR Cas9 genome editing to investigate a potential new antiarrhythmic strategy}, series = {Stem Cell Research}, volume = {60}, journal = {Stem Cell Research}, doi = {10.1016/j.scr.2022.102677}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300936}, year = {2022}, abstract = {The sodium channel Na\(_{v}\)1.8, encoded by SCN10A, is reported to contribute to arrhythmogenesis by inducing the late I\(_{Na}\) and thereby enhanced persistent Na\(^{+}\) current. However, its exact electrophysiological role in cardiomyocytes remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) with a homozygous SCN10A knock-out from a healthy iPSC line by CRISPR Cas9 genome editing. The edited iPSCs maintained full pluripotency, genomic integrity, and spontaneous in vitro differentiation capacity. The iPSCs are able to differentiate into iPSC-cardiomyocytes, hence making it possible to investigate the role of Na\(_{v}\)1.8 in the heart.}, language = {en} } @article{JeanclosSchloetzerHadameketal.2022, author = {Jeanclos, Elisabeth and Schl{\"o}tzer, Jan and Hadamek, Kerstin and Yuan-Chen, Natalia and Alwahsh, Mohammad and Hollmann, Robert and Fratz, Stefanie and Yesilyurt-Gerhards, Dilan and Frankenbach, Tina and Engelmann, Daria and Keller, Angelika and Kaestner, Alexandra and Schmitz, Werner and Neuenschwander, Martin and Hergenr{\"o}der, Roland and Sotriffer, Christoph and von Kries, Jens Peter and Schindelin, Hermann and Gohla, Antje}, title = {Glycolytic flux control by drugging phosphoglycolate phosphatase}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-022-34228-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-300928}, year = {2022}, abstract = {Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates.}, language = {en} } @article{KlenkHommersLohse2022, author = {Klenk, Christoph and Hommers, Leif and Lohse, Martin J.}, title = {Proteolytic cleavage of the extracellular domain affects signaling of parathyroid hormone 1 receptor}, series = {Frontiers in Endocrinology}, volume = {13}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2022.839351}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262055}, year = {2022}, abstract = {Parathyroid hormone 1 receptor (PTH1R) is a member of the class B family of G protein-coupled receptors, which are characterized by a large extracellular domain required for ligand binding. We have previously shown that the extracellular domain of PTH1R is subject to metalloproteinase cleavage in vivo that is regulated by ligand-induced receptor trafficking and leads to impaired stability of PTH1R. In this work, we localize the cleavage site in the first loop of the extracellular domain using amino-terminal protein sequencing of purified receptor and by mutagenesis studies. We further show, that a receptor mutant not susceptible to proteolytic cleavage exhibits reduced signaling to G\(_s\) and increased activation of G\(_q\) compared to wild-type PTH1R. These findings indicate that the extracellular domain modulates PTH1R signaling specificity, and that its cleavage affects receptor signaling.}, language = {en} } @phdthesis{İşbilir2022, author = {İ{\c{s}}bilir, Ali}, title = {Localization and Trafficking of CXCR4 and CXCR7}, doi = {10.25972/OPUS-24937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249378}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins, and are the master components that translate extracellular stimulus into intracellular signaling, which in turn modulates key physiological and pathophysiological processes. Research within the last three decades suggests that many GPCRs can form complexes with each other via mechanisms that are yet unexplored. Despite a number of functional evidence in favor of GPCR dimers and oligomers, the existence of such complexes remains controversial, as different methods suggest diverse quaternary organizations for individual receptors. Among various methods, high resolution fluorescence microscopy and imagebased fluorescence spectroscopy are state-of-the-art tools to quantify membrane protein oligomerization with high precision. This thesis work describes the use of single molecule fluorescence microscopy and implementation of two confocal microscopy based fluorescence fluctuation spectroscopy based methods for characterizing the quaternary organization of two class A GPCRs that are important clinical targets: the C-X-C type chemokine receptor 4 (CXCR4) and 7 (CXCR7), or recently named as the atypical chemokine receptor 3 (ACKR3). The first part of the results describe that CXCR4 protomers are mainly organized as monomeric entities that can form transient dimers at very low expression levels allowing single molecule resolution. The second part describes the establishment and use of spatial and temporal brightness methods that are based on fluorescence fluctuation spectroscopy. Results from this part suggests that ACKR3 forms clusters and surface localized monomers, while CXCR4 forms increasing amount of dimers as a function of receptor density in cells. Moreover, CXCR4 dimerization can be modulated by its ligands as well as receptor conformations in distinct manners. Further results suggest that antagonists of CXCR4 display distinct binding modes, and the binding mode influences the oligomerization and the basal activity of the receptor: While the ligands that bind to a "minor" subpocket suppress both dimerization and constitutive activity, ligands that bind to a distinct, "major" subpocket only act as neutral antagonists on the receptor, and do not modulate neither the quaternary organization nor the basal signaling of CXCR4. Together, these results link CXCR4 dimerization to its density and to its activity, which may represent a new strategy to target CXCR4.}, subject = {G-Protein gekoppelter Rezeptor}, language = {en} } @phdthesis{Soliman2022, author = {Soliman, Alexander}, title = {Einfluss des Gewichtsverlusts auf den oxidativen Stress und den DNS-Schaden in adip{\"o}sen Patient*innen nach bariatrischer Chirurgie}, doi = {10.25972/OPUS-27835}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278354}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Adipositas ist eine Erkrankung, die durch ein erh{\"o}htes Krebsrisiko neben zahlreichen anderen Komorbidit{\"a}ten mit weitreichenden Folgen f{\"u}r die Gesundheit adip{\"o}ser Patient*innen einhergeht. In der Pathogenese der adipositas-assoziierten Krebsarten sind dabei ein erh{\"o}hter oxidativer Stress sowie die damit einhergehende Sch{\"a}digung der DNS maßgeblich beteiligt. Im Umkehrschluss wurde in der vorliegenden Arbeit der Einfluss eines durch bariatrische Chirurgie induzierten Gewichtsverlusts auf den oxidativen Stress und DNS-Schaden in adip{\"o}sen Patient*innen anhand von Blutproben pr{\"a}operativ sowie 6 und 12 Monate postoperativ untersucht. In einer Subpopulation der Patient*innen konnte eine tendenzielle Verringerung des DNS-Schadens anhand des Comet-Assays in peripheren Lymphozyten beobachtet werden. Im Hinblick auf den oxidativen Stress wurde im Plasma die Eisenreduktionsf{\"a}higkeit als Maß f{\"u}r die antioxidative Kapazit{\"a}t sowie Malondialdehyd als Surrogatmarker f{\"u}r das Ausmaß an Lipidperoxidation bestimmt. Weiterhin wurde in Erythrozyten das Gesamtglutathion und das oxidierte Glutathion bestimmt. Die oxidativen Stressparameter zeigten insgesamt nach einer initialen Zunahme im oxidativen Stress 6 Monate postoperativ eine r{\"u}ckl{\"a}ufige Tendenz im oxidativen Stress am Studienende. Somit geben die Beobachtungen dieser Arbeit Anlass zur Hoffnung, dass adip{\"o}se Patient*innen durch einen bariatrisch induzierten Gewichtsverlust von einer Verringerung des Krebsrisikos profitieren k{\"o}nnten.}, subject = {Magenchirurgie}, language = {de} } @article{ObidiegwuLyonsChilaka2020, author = {Obidiegwu, Jude E. and Lyons, Jessica B. and Chilaka, Cynthia A.}, title = {The Dioscorea genus (yam) — an appraisal of nutritional and therapeutic potentials}, series = {Foods}, volume = {9}, journal = {Foods}, number = {9}, issn = {2304-8158}, doi = {10.3390/foods9091304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213102}, year = {2020}, abstract = {The quest for a food secure and safe world has led to continuous effort toward improvements of global food and health systems. While the developed countries seem to have these systems stabilized, some parts of the world still face enormous challenges. Yam (Dioscorea species) is an orphan crop, widely distributed globally; and has contributed enormously to food security especially in sub-Saharan Africa because of its role in providing nutritional benefits and income. Additionally, yam has non-nutritional components called bioactive compounds, which offer numerous health benefits ranging from prevention to treatment of degenerative diseases. Pharmaceutical application of diosgenin and dioscorin, among other compounds isolated from yam, has shown more prospects recently. Despite the benefits embedded in yam, reports on the nutritional and therapeutic potentials of yam have been fragmented and the diversity within the genus has led to much confusion. An overview of the nutritional and health importance of yam will harness the crop to meet its potential towards combating hunger and malnutrition, while improving global health. This review makes a conscious attempt to provide an overview regarding the nutritional, bioactive compositions and therapeutic potentials of yam diversity. Insights on how to increase its utilization for a greater impact are elucidated.}, language = {en} } @article{VazquezRodriguezVilarKachleretal.2020, author = {Vazquez-Rodriguez, Saleta and Vilar, Santiago and Kachler, Sonja and Klotz, Karl-Norbert and Uriarte, Eugenio and Borges, Fernanda and Matos, Maria Jo{\~a}o}, title = {Adenosine receptor ligands: coumarin-chalcone hybrids as modulating agents on the activity of hARs}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {18}, issn = {1420-3049}, doi = {10.3390/molecules25184306}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213165}, year = {2020}, abstract = {Adenosine receptors (ARs) play an important role in neurological and psychiatric disorders such as Alzheimer's disease, Parkinson's disease, epilepsy and schizophrenia. The different subtypes of ARs and the knowledge on their densities and status are important for understanding the mechanisms underlying the pathogenesis of diseases and for developing new therapeutics. Looking for new scaffolds for selective AR ligands, coumarin-chalcone hybrids were synthesized (compounds 1-8) and screened in radioligand binding (hA\(_1\), hA\(_{2A}\) and hA\(_3\)) and adenylyl cyclase (hA\(_{2B}\)) assays in order to evaluate their affinity for the four human AR subtypes (hARs). Coumarin-chalcone hybrid has been established as a new scaffold suitable for the development of potent and selective ligands for hA\(_1\) or hA\(_3\) subtypes. In general, hydroxy-substituted hybrids showed some affinity for the hA\(_1\), while the methoxy counterparts were selective for the hA\(_3\). The most potent hA\(_1\) ligand was compound 7 (K\(_i\) = 17.7 µM), whereas compound 4 was the most potent ligand for hA\(_3\) (K\(_i\) = 2.49 µM). In addition, docking studies with hA\(_1\) and hA\(_3\) homology models were established to analyze the structure-function relationships. Results showed that the different residues located on the protein binding pocket could play an important role in ligand selectivity.}, language = {en} } @article{WeigandRonchiVanselowetal.2021, author = {Weigand, Isabel and Ronchi, Cristina L. and Vanselow, Jens T. and Bathon, Kerstin and Lenz, Kerstin and Herterich, Sabine and Schlosser, Andreas and Kroiss, Matthias and Fassnacht, Martin and Calebiro, Davide and Sbiera, Silviu}, title = {PKA Cα subunit mutation triggers caspase-dependent RIIβ subunit degradation via Ser\(^{114}\) phosphorylation}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {8}, doi = {10.1126/sciadv.abd4176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270445}, year = {2021}, abstract = {Mutations in the PRKACA gene are the most frequent cause of cortisol-producing adrenocortical adenomas leading to Cushing's syndrome. PRKACA encodes for the catalytic subunit α of protein kinase A (PKA). We already showed that PRKACA mutations lead to impairment of regulatory (R) subunit binding. Furthermore, PRKACA mutations are associated with reduced RIIβ protein levels; however, the mechanisms leading to reduced RIIβ levels are presently unknown. Here, we investigate the effects of the most frequent PRKACA mutation, L206R, on regulatory subunit stability. We find that Ser\(^{114}\) phosphorylation of RIIβ is required for its degradation, mediated by caspase 16. Last, we show that the resulting reduction in RIIβ protein levels leads to increased cortisol secretion in adrenocortical cells. These findings reveal the molecular mechanisms and pathophysiological relevance of the R subunit degradation caused by PRKACA mutations, adding another dimension to the deregulation of PKA signaling caused by PRKACA mutations in adrenal Cushing's syndrome.}, language = {en} } @article{BankogluSchueleStopper2021, author = {Bankoglu, Ezgi Eyluel and Schuele, Carolin and Stopper, Helga}, title = {Cell survival after DNA damage in the comet assay}, series = {Archives of Toxicology}, volume = {95}, journal = {Archives of Toxicology}, number = {12}, doi = {10.1007/s00204-021-03164-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265339}, pages = {3803-3813}, year = {2021}, abstract = {The comet assay is widely used in basic research, genotoxicity testing, and human biomonitoring. However, interpretation of the comet assay data might benefit from a better understanding of the future fate of a cell with DNA damage. DNA damage is in principle repairable, or if extensive, can lead to cell death. Here, we have correlated the maximally induced DNA damage with three test substances in TK6 cells with the survival of the cells. For this, we selected hydrogen peroxide (H\(_{2}\)O\(_{2}\)) as an oxidizing agent, methyl methanesulfonate (MMS) as an alkylating agent and etoposide as a topoisomerase II inhibitor. We measured cell viability, cell proliferation, apoptosis, and micronucleus frequency on the following day, in the same cell culture, which had been analyzed in the comet assay. After treatment, a concentration dependent increase in DNA damage and in the percentage of non-vital and apoptotic cells was found for each substance. Values greater than 20-30\% DNA in tail caused the death of more than 50\% of the cells, with etoposide causing slightly more cell death than H\(_{2}\)O\(_{2}\) or MMS. Despite that, cells seemed to repair of at least some DNA damage within few hours after substance removal. Overall, the reduction of DNA damage over time is due to both DNA repair and death of heavily damaged cells. We recommend that in experiments with induction of DNA damage of more than 20\% DNA in tail, survival data for the cells are provided.}, language = {en} } @article{BankogluStippGerberetal.2021, author = {Bankoglu, Ezgi Eyluel and Stipp, Franzisca and Gerber, Johanna and Seyfried, Florian and Heidland, August and Bahner, Udo and Stopper, Helga}, title = {Effect of cryopreservation on DNA damage and DNA repair activity in human blood samples in the comet assay}, series = {Archives of Toxicology}, volume = {95}, journal = {Archives of Toxicology}, number = {5}, doi = {10.1007/s00204-021-03012-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265326}, pages = {1831-1841}, year = {2021}, abstract = {The comet assay is a commonly used method to determine DNA damage and repair activity in many types of samples. In recent years, the use of the comet assay in human biomonitoring became highly attractive due to its various modified versions, which may be useful to determine individual susceptibility in blood samples. However, in human biomonitoring studies, working with large sample numbers that are acquired over an extended time period requires some additional considerations. One of the most important issues is the storage of samples and its effect on the outcome of the comet assay. Another important question is the suitability of different blood preparations. In this study, we analysed the effect of cryopreservation on DNA damage and repair activity in human blood samples. In addition, we investigated the suitability of different blood preparations. The alkaline and FPG as well as two different types of repair comet assay and an in vitro hydrogen peroxide challenge were applied. Our results confirmed that cryopreserved blood preparations are suitable for investigating DNA damage in the alkaline and FPG comet assay in whole blood, buffy coat and PBMCs. Ex vivo hydrogen peroxide challenge yielded its optimal effect in isolated PBMCs. The utilised repair comet assay with either UVC or hydrogen peroxide-induced lesions and an aphidicolin block worked well in fresh PBMCs. Cryopreserved PBMCs could not be used immediately after thawing. However, a 16-h recovery with or without mitotic stimulation enabled the application of the repair comet assay, albeit only in a surviving cell fraction.}, language = {en} } @phdthesis{Jarzina2022, author = {Jarzina, Sebastian Oskar}, title = {Assessment of systemic toxicity in vitro using the Adverse Outcome Pathway (AOP) concept: nephrotoxicity due to receptor-mediated endocytosis and lysosomal overload and inhibition of mtDNA polymerase-ɣ as case studies}, doi = {10.25972/OPUS-26484}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264842}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The US National Research Council (NRC) report "Toxicity Testing in the 21st Century: A Vision and a strategy (Tox21)", published in 2007, calls for a complete paradigm shift in tox-icity testing. A central aspect of the proposed strategy includes the transition from apical end-points in in vivo studies to more mechanistically based in vitro tests. To support and facilitate the transition and paradigm shift in toxicity testing, the Adverse Outcome Pathway (AOP) concept is widely recognized as a pragmatic tool. As case studies, the AOP concept was ap-plied in this work to develop AOPs for proximal tubule injuries initiated by Receptor-mediated endocytosis and lysosomal overload and Inhibition of mtDNA polymerase-. These AOPs were used as a mechanistic basis for the development of in vitro assays for each key event (KE). To experimentally support the developed in vitro assays, proximal tubule cells from rat (NRK-52E) and human (RPTEC/TERT1) were treated with model compounds. To measure the dis-turbance of lysosomal function in the AOP - Receptor-mediated endocytosis and lysosomal overload, polymyxin antibiotics (polymyxin B, colistin, polymyxin B nonapeptide) were used as model compounds. Altered expression of lysosomal associated membrane protein 1/2 (LAMP-1/2) (KE1) and cathepsin D release from lysosomes (KE2) were determined by im-munofluorescence, while cytotoxicity (KE3) was measured using the CellTiter-Glo® cell via-bility assay. Importantly, significant differences in polymyxin uptake and susceptibility be-tween cell lines were observed, underlining the importance of in vitro biokinetics to determine an appropriate in vitro point of departure (PoD) for risk assessment. Compared to the in vivo situation, distinct expression of relevant transporters such as megalin and cubilin on mRNA and protein level in the used cell lines (RPTEC/TERT1 and NRK-52E) could not be con-firmed, making integration of quantitative in vitro to in vivo extrapolations (QIVIVE) neces-sary. Integration of QIVIVE by project partners of the University of Utrecht showed an im-provement in the modelled biokinetic data for polymyxin B. To assess the first key event, (KE1) Depletion of mitochondrial DNA, in the AOP - Inhibition of mtDNA polymerase-, a RT-qPCR method was used to determine the mtDNA copy number in cells treated with mod-el compounds (adefovir, cidofovir, tenofovir, adefovir dipivoxil, tenofovir disoproxil fumarate). Mitochondrial toxicity (KE2) was measured by project partners using the high-content imaging technique and MitoTracker® whereas cytotoxicity (KE3) was determined by CellTiter-Glo® cell viability assay. In contrast to the mechanistic hypothesis underlying the AOP - Inhibition of mtDNA polymerase-, treatment with model compounds for 24 h resulted in an increase rather than a decrease in mtDNA copy number (KE1). Only minor effects on mitochondrial toxicity (KE2) and cytotoxicity (KE3) were observed. Treatment of RPT-EC/TERT1 cells for 14 days showed only a slight decrease in mtDNA copy number after treatment with adefovir dipivoxil and tenofovir disoproxil fumarate, underscoring some of the limitations of short-term in vitro systems. To obtain a first estimation for risk assessment based on in vitro data, potential points of departure (PoD) for each KE were calculated from the obtained in vitro data. The most common PoDs were calculated such as the effect concentra-tion at which 10 \% or 20_\% effect was measured (EC10, EC20), the highest no observed effect concentration (NOEC), the lowest observed effect concentration (LOEC), the benchmark 10 \% (lower / upper) concentrations (BMC10, BMCL10, BMCU10) and a modelled non-toxic con-centration (NtC). These PoDs were then compared with serum and tissue concentrations de-termined from in vivo studies after treatment with therapeutic / supratherapeutic doses of the respective drugs in order to obtain a first estimate of risk based on in vitro data. In addition, AOPs were used to test whether the quantitative key event relationships between key events allow prediction of downstream effects and effects on the adverse outcome (AO) based on measurements of an early key event. Predictions of cytotoxicity from the mathematical rela-tionships showed good concordance with measured cytotoxicity after treatment with colistin and polymyxin b nonapeptide. The work also revealed uncertainties and limitations of the ap-plied strategy, which have a significant impact on the prediction and on a risk assessment based on in vitro results.}, language = {en} } @phdthesis{BathePeters2022, author = {Bathe-Peters, Marc}, title = {Spectroscopic approaches for the localization and dynamics of β\(_1\)- and β\(_2\)-adrenergic receptors in cardiomyocytes}, doi = {10.25972/OPUS-25812}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258126}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In the heart the β\(_1\)-adrenergic receptor (AR) and the β\(_2\)-AR, two prototypical G protein-coupled receptors (GPCRs), are both activated by the same hormones, namely adrenaline and noradrenaline. Both receptors couple to stimulatory G\(_s\) proteins, mediate an increase in cyclic adenosine monophosphate (cAMP) and influence the contractility and frequency of the heart upon stimulation. However, activation of the β\(_1\)-AR, not the β\(_2\)-AR, lead to other additional effects, such as changes in gene transcription resulting in cardiac hypertrophy, leading to speculations on how distinct effects can arise from receptors coupled to the same downstream signaling pathway. In this thesis the question of whether this distinct behavior may originate from a differential localization of these two receptors in adult cardiomyocytes is addressed. Therefore, fluorescence spectroscopy tools are developed and implemented in order to elucidate the presence and dynamics of these endogenous receptors at the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. This allows the visualization of confined localization and diffusion of the β\(_2\)-AR to the T-tubular network at endogenous expression. In contrast, the β\(_1\)-AR is found diffusing at both the outer plasma membrane and the T-tubules. Upon overexpression of the β\(_2\)-AR in adult transgenic cardiomyocytes, the receptors experience a loss of this compartmentalization and are also found at the cell surface. These data suggest that distinct signaling and functional effects can be controlled by specific cell surface targeting of the receptor subtypes. The tools at the basis of this thesis work are a fluorescent adrenergic antagonist in combination of fluorescence fluctuation spectroscopy to monitor the localization and dynamics of the lowly expressed adrenergic receptors. Along the way to optimizing these approaches, I worked on combining widefield and confocal imaging in one setup, as well as implementing a stable autofocus mechanism using electrically tunable lenses.}, subject = {G-Protein gekoppelte Rezeptoren}, language = {en} } @phdthesis{Soliman2022, author = {Soliman, Alexander}, title = {Einfluss des Gewichtsverlusts auf den oxidativen Stress und den DNS-Schaden in adip{\"o}sen Patient*innen nach bariatrischer Chirurgie}, doi = {10.25972/OPUS-25973}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259737}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Einfluss des Gewichtsverlusts auf den oxidativen Stress und den DNS-Schaden in adip{\"o}sen Patient*innen nach bariatrischer Chirurgie Adipositas ist eine Erkrankung, die durch ein erh{\"o}htes Krebsrisiko neben zahlreichen anderen Komorbidit{\"a}ten mit weitreichenden Folgen f{\"u}r die Gesundheit adip{\"o}ser Patient*innen einhergeht. In der Pathogenese der adipositas-assoziierten Krebsarten sind dabei ein erh{\"o}hter oxidativer Stress sowie die damit einhergehende Sch{\"a}digung der DNS maßgeblich beteiligt. Im Umkehrschluss wurde in der vorliegenden Arbeit der Einfluss eines durch bariatrische Chirurgie induzierten Gewichtsverlusts auf den oxidativen Stress und DNS-Schaden in adip{\"o}sen Patient*innen anhand von Blutproben pr{\"a}operativ sowie 6 und 12 Monate postoperativ untersucht. In einer Subpopulation der Patient*innen konnte eine tendenzielle Verringerung des DNS-Schadens anhand des Comet-Assays in peripheren Lymphozyten beobachtet werden. Im Hinblick auf den oxidativen Stress wurde im Plasma die Eisenreduktionsf{\"a}higkeit als Maß f{\"u}r antioxidative Kapazit{\"a}t sowie Malondialdehyd als Surrogatmarker f{\"u}r das Ausmaß an Lipidperoxidation bestimmt. Weiterhin wurde in Erythrozyten das Gesamtglutathion und oxidierte Glutathion bestimmt. Die oxidativen Stressparameter zeigten insgesamt nach einer initialen Zunahme im oxidativen Stress 6 Monate postoperativ eine r{\"u}ckl{\"a}ufige Tendenz im oxidativen Stress am Studienende. Somit geben die Beobachtungen dieser Arbeit Anlass zur Hoffnung, dass adip{\"o}se Patient*innen durch einen bariatrisch induzierten Gewichtsverlust von einer Verringerung des Krebsrisikos profitieren k{\"o}nnten.}, subject = {Magenchirurgie}, language = {de} } @phdthesis{Bertelsmann2022, author = {Bertelsmann, Dietmar}, title = {Analysis of the Frequency of Kidney Toxicity in Preclinical Safety Studies using the eTOX Database}, doi = {10.25972/OPUS-25710}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257104}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This research aimed to obtain reliable data on the frequency of different types of renal toxicity findings in 28-day oral gavage studies in Wistar rats, their consistency across species and study duration, as well as the correlation between histopathological endpoints and routinely used clinical chemistry parameters indicative of kidney injury. Analysis of renal histopathological findings was carried out through extraction of information from the IMI eTOX database. Spontaneous renal histopathological findings in 28-day oral gavage studies in control Wistar rats and beagle dogs confirmed tubular basophilia and renal dilation as the most frequent incidental findings in controls, whereas necrosis and glomerulosclerosis were not identified at all or only rarely as a background lesion. Histopathological evidence of necrosis and glomerulosclerosis was associated with changes in clinical chemistry parameters in 28-day oral gavage Wistar rat studies. Necrosis was frequently accompanied by a statistically significant rise in serum creatinine and serum urea, whereas serum albumin was frequently found to decrease statistically significantly in treatment groups in which necrosis was recorded. In contrast to necrosis, glomerulosclerosis was not associated with statistically significant changes in serum creatinine and urea in any of the 28-day oral gavage Wistar rat treatment groups, but appears to be best reflected by a pattern of statistically significantly lowered serum albumin and serum protein together with a statistically significant increase in serum cholesterol. As might have been expected based on the high background incidences of tubular basophilia and dilation, no consistent changes in any of the clinical chemistry parameters were evident in animals in which renal lesions were con� fined to renal tubular basophilia or dilation. In summary, the routinely provided clinical chemistry parameters are rather insensitive - novel kidney biomarkers such as Cystatin C, β-trace protein and Kidney injury molecule 1 should further be evaluated and integrated into routine preclinical and clinical practice. However, evaluation of clinical chemistry data was limited by the lack of individual animal data. Even though an extensive amount of preclinical studies is accessible through the eTOX database, comparison of consistency across time was limited by the limited number of shorter- and longer term studies conducted with the compounds identified as causing renal histopathological changes within a 28- day study in rats. A high consistency across time for both treatment-related tubular basophilia and treatment-related dilation cannot be confirmed for either of the two effects as these two findings were both induced only rarely in studies over a different treatment-duration other than 28 days after administration of the compounds which provoked the respective effect in a 28-day study. For the finding of necrosis consistency across time was low with the exception of "AZ_GGA_200002321", in which renal papillary necrosis was identified consist� ently throughout different treatment durations (2, 4, 26, 104 weeks). No shorter and longer-term studies were available for the compounds identified as causing glomerulosclerosis within a 28-day study in rats. No consistent findings of the selected histopathological endpoints were identified in any of the corresponding 28-day oral gavage beagle dog studies after treatment with the identical compounds, which caused the respective ef� fect after 28-day treatment in rats. However, in the overwhelming majority of cases, beagle dogs were administered lower doses in these studies in compar� ison to the corresponding 28-day Wistar rat studies. Searching the eTOX database yielded no 28-day oral gavage studies in Wistar and Wistar Han rats in which accumulation of hyaline droplets, tubular atrophy or hyperplasia was recorded. Only one 28-day oral gavage Wistar rat study was identified with the histopathological result of neutrophilic inflammation. Consequently, evaluation of these four renal findings in relation to clinical chemistry parameters and consistency across time and species cannot be made. In summary, this work contributes knowledge through mining and evaluating the eTOX database on a variety of specific renal endpoints that frequently occur after administration of trial substances in 28-day oral gavage studies in Wistar rats in the field of preclinical toxicity with specific focus on their frequency relation to background findings, as well as consistency across time and species. Targeted statistical evaluation of in vivo data within joint research ventures such as the eTOX project, presents an enormous opportunity for an innovative future way of aiding preclinical research towards a more efficient research in the preclinical stage of drug development. This could be achieved through the aug� mentation of methodological strategies and possibly novel software tools in order to predict in vivo toxicology of new molecular entities by means of information that is already available before early stages of the drug development pipeline begin.}, language = {en} } @phdthesis{Anton2021, author = {Anton, Selma}, title = {Characterization of cAMP nanodomains surrounding the human Glucagon-like peptide 1 receptor using FRET-based reporters}, doi = {10.25972/OPUS-19069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190695}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Cyclic adenosine monophosphate (cAMP), the ubiquitous second messenger produced upon stimulation of GPCRs which couple to the stimulatory GS protein, orchestrates an array of physiological processes including cardiac function, neuronal plasticity, immune responses, cellular proliferation and apoptosis. By interacting with various effector proteins, among others protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), it triggers signaling cascades for the cellular response. Although the functional outcomes of GSPCR-activation are very diverse depending on the extracellular stimulus, they are all mediated exclusively by this single second messenger. Thus, the question arises how specificity in such responses may be attained. A hypothesis to explain signaling specificity is that cellular signaling architecture, and thus precise operation of cAMP in space and time would appear to be essential to achieve signaling specificity. Compartments with elevated cAMP levels would allow specific signal relay from receptors to effectors within a micro- or nanometer range, setting the molecular basis for signaling specificity. Although the paradigm of signaling compartmentation gains continuous recognition and is thoroughly being investigated, the molecular composition of such compartments and how they are maintained remains to be elucidated. In addition, such compartments would require very restricted diffusion of cAMP, but all direct measurements have indicated that it can diffuse in cells almost freely. In this work, we present the identification and characterize of a cAMP signaling compartment at a GSPCR. We created a F{\"o}rster resonance energy transfer (FRET)-based receptor-sensor conjugate, allowing us to study cAMP dynamics in direct vicinity of the human glucagone-like peptide 1 receptor (hGLP1R). Additional targeting of analogous sensors to the plasma membrane and the cytosol enables assessment of cAMP dynamics in different subcellular regions. We compare both basal and stimulated cAMP levels and study cAMP crosstalk of different receptors. With the design of novel receptor nanorulers up to 60nm in length, which allow mapping cAMP levels in nanometer distance from the hGLP1R, we identify a cAMP nanodomain surrounding it. Further, we show that phosphodiesterases (PDEs), the only enzymes known to degrade cAMP, are decisive in constraining cAMP diffusion into the cytosol thereby maintaining a cAMP gradient. Following the discovery of this nanodomain, we sought to investigate whether downstream effectors such as PKA are present and active within the domain, additionally studying the role of A-kinase anchoring proteins (AKAPs) in targeting PKA to the receptor compartment. We demonstrate that GLP1-produced cAMP signals translate into local nanodomain-restricted PKA phosphorylation and determine that AKAP-tethering is essential for nanodomain PKA. Taken together, our results provide evidence for the existence of a dynamic, receptor associated cAMP nanodomain and give prospect for which key proteins are likely to be involved in its formation. These conditions would allow cAMP to exert its function in a spatially and temporally restricted manner, setting the basis for a cell to achieve signaling specificity. Understanding the molecular mechanism of cAMP signaling would allow modulation and thus regulation of GPCR signaling, taking advantage of it for pharmacological treatment.}, language = {en} } @article{SchihadaVandenabeeleZabeletal.2018, author = {Schihada, Hannes and Vandenabeele, Sylvie and Zabel, Ulrike and Frank, Monika and Lohse, Martin J. and Maiellaro, Isabella}, title = {A universal bioluminescence resonance energy transfer sensor design enables high-sensitivity screening of GPCR activation dynamics}, series = {Communications Biology}, volume = {1}, journal = {Communications Biology}, number = {105}, doi = {10.1038/s42003-018-0072-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228592}, pages = {1-8}, year = {2018}, abstract = {G-protein-coupled receptors (GPCRs) represent one of the most important classes of drug targets. The discovery of new GCPR therapeutics would greatly benefit from the development of a generalizable high-throughput assay to directly monitor their activation or de-activation. Here we screened a variety of labels inserted into the third intracellular loop and the C-terminus of the alpha(2 Lambda)-adrenergic receptor and used fluorescence (FRET) and bioluminescence resonance energy transfer (BRET) to monitor ligand-binding and activation dynamics. We then developed a universal intramolecular BRET receptor sensor design to quantify efficacy and potency of GPCR ligands in intact cells and real time. We demonstrate the transferability of the sensor design by cloning beta(2)-adrenergic and PTH1-receptor BRET sensors and monitored their efficacy and potency. For all biosensors, the Z factors were well above 0.5 showing the suitability of such design for microtiter plate assays. This technology will aid the identification of novel types of GPCR ligands.}, language = {en} } @phdthesis{Kreutzmann2021, author = {Kreutzmann, Moritz Paul}, title = {Untersuchung von Markern f{\"u}r oxidativen Stress und DNA-Sch{\"a}den bei arterieller Hypertonie}, doi = {10.25972/OPUS-24338}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243380}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Patienten mit arterieller Hypertonie haben ein erh{\"o}htes Risiko eine Tumorerkrankung, insbesondere Nierenzellkarzinome, zu entwickeln. Die arterielle Hypertonie ist {\"u}ber die Entstehung von oxidativem Stress mit der Entwicklung von DNA-Sch{\"a}den verkn{\"u}pft, wobei ein hochreguliertes Renin-Angiotensin-Aldosteron-System (RAAS) eine entscheidende Rolle einnimmt. Das Ziel dieser Arbeit war es zum einen Hypertoniker (HypAll) und gesunde Kontrollen und zum anderen gut (HypGut) und schlecht (HypSch) eingestellte Hypertoniker unter Ber{\"u}cksichtigung der eingenommenen Antihypertensiva bez{\"u}glich ihrer Level an oxidativem Stress und DNA-Sch{\"a}den zu vergleichen. Zus{\"a}tzlich erfolgte im Rahmen einer L{\"a}ngsschnittanalyse der intraindividuelle Vergleich unter den Hypertonikern. Hierf{\"u}r erfolgte die Bestimmung von SHp, D-ROM und 3-Nitrotyrosin als Marker f{\"u}r oxidativen Stress im Plasma, von 8-oxodG, 15-F2t-Isoprostan und Malondialdehyd als Marker f{\"u}r oxidativen Stress im Urin und von γ-H2AX und Mikrokernen als Marker f{\"u}r DNA-Sch{\"a}den in Lymphozyten. Dabei konnte ein erh{\"o}hter oxidativer Stress in der HypAll-Gruppe verglichen zu den Kontrollen anhand aller Marker f{\"u}r oxidativen Stress mit Ausnahme von Malondialdehyd festgestellt werden. Nach Altersadjustierung zeigte sich dieser Gruppenunterschied nur noch f{\"u}r die Proteinstressmarker SHp und 3-Nitrotyrosin signifikant. Bez{\"u}glich der Marker f{\"u}r DNA-Sch{\"a}den ergab sich kein Unterschied zwischen HypAll und Kontrollen. Ebenso zeigte sich kein signifikanter Unterschied in den Leveln f{\"u}r oxidativen Stress und DNA-Sch{\"a}den zwischen der HypGut- und HypSch-Gruppe. Zuletzt konnte im Rahmen der L{\"a}ngsschnittstudie ein positiver Zusammenhang zwischen der Entwicklung des Blutdrucks und des oxidativen Stresses anhand der Ver{\"a}nderung von D-ROM und des systolischen Blutdrucks beobachtet werden. Die teils nicht-signifikanten und teils mangelnden Unterschiede zwischen HypAll und Kontrollen sowie zwischen HypGut und HypSch sind am ehesten durch das besondere Patientengut, welches sich auch grundlegend von dem anderer vergleichbarer Studien unterscheidet, erkl{\"a}rbar. Die Patienten mit therapieresistenter Hypertonie (TRH) zeichnen sich durch eine langj{\"a}hrige Einnahme zahlreicher Antihypertensiva aus. Diese, insbesondere die RAAS-wirksamen, besitzen eine {\"u}ber die reine Blutdrucksenkung hinausgehende antioxidative und antigenotoxische Wirkung, welche vermutlich zu einer Angleichung der Level f{\"u}r oxidativen Stress und DNA-Sch{\"a}den gef{\"u}hrt hat. Um die Dynamik der Biomarker und den Einfluss der Antihypertensiva auf oxidativen Stress und DNA-Sch{\"a}den besser zu verstehen, sind weitere Studien {\"u}ber einen l{\"a}ngeren Beobachtungszeitraum sowie mit zus{\"a}tzlich therapienaiven Hypertonikern sinnvoll. Die weitere Erforschung von Biomarkern, um sie im klinischen Alltag zur Verbesserung der Patientenbehandlung einsetzen zu k{\"o}nnen, ist notwendig.}, subject = {Oxidativer Stress}, language = {de} }