@article{KarunakaranSubramanianJinetal.2023, author = {Karunakaran, Mohindar M. and Subramanian, Hariharan and Jin, Yiming and Mohammed, Fiyaz and Kimmel, Brigitte and Juraske, Claudia and Starick, Lisa and N{\"o}hren, Anna and L{\"a}nder, Nora and Willcox, Carrie R. and Singh, Rohit and Schamel, Wolfgang W. and Nikolaev, Viacheslav O. and Kunzmann, Volker and Wiemer, Andrew J. and Willcox, Benjamin E. and Herrmann, Thomas}, title = {A distinct topology of BTN3A IgV and B30.2 domains controlled by juxtamembrane regions favors optimal human γδ T cell phosphoantigen sensing}, series = {Nature Communications}, volume = {14}, journal = {Nature Communications}, doi = {10.1038/s41467-023-41938-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-358179}, year = {2023}, abstract = {Butyrophilin (BTN)-3A and BTN2A1 molecules control the activation of human Vγ9Vδ2 T cells during T cell receptor (TCR)-mediated sensing of phosphoantigens (PAg) derived from microbes and tumors. However, the molecular rules governing PAg sensing remain largely unknown. Here, we establish three mechanistic principles of PAg-mediated γδ T cell activation. First, in humans, following PAg binding to the intracellular BTN3A1-B30.2 domain, Vγ9Vδ2 TCR triggering involves the extracellular V-domain of BTN3A2/BTN3A3. Moreover, the localization of both protein domains on different chains of the BTN3A homo-or heteromers is essential for efficient PAg-mediated activation. Second, the formation of BTN3A homo-or heteromers, which differ in intracellular trafficking and conformation, is controlled by molecular interactions between the juxtamembrane regions of the BTN3A chains. Finally, the ability of PAg not simply to bind BTN3A-B30.2, but to promote its subsequent interaction with the BTN2A1-B30.2 domain, is essential for T-cell activation. Defining these determinants of cooperation and the division of labor in BTN proteins improves our understanding of PAg sensing and elucidates a mode of action that may apply to other BTN family members.}, language = {en} } @article{WilhelmSmetakSchaeferEckartetal.2014, author = {Wilhelm, Martin and Smetak, Manfred and Schaefer-Eckart, Kerstin and Kimmel, Brigitte and Birkmann, Josef and Einsele, Hermann and Kunzmann, Volker}, title = {Successful adoptive transfer and in vivo expansion of haploidentical γδ T cells}, series = {Journal of Translational Medicine}, volume = {12}, journal = {Journal of Translational Medicine}, number = {45}, doi = {10.1186/1479-5876-12-45}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117290}, year = {2014}, abstract = {Background: The primary aim of this pilot study was to determine the feasibility and safety of an adoptive transfer and in vivo expansion of human haploidentical gamma delta T lymphocytes. Methods: Patients with advanced haematological malignancies who are not eligible for allogeneic transplantation received peripheral blood mononuclear cells from half-matched family donors. For that, a single unstimulated leukapheresis product was incubated with both the anti-CD4 and anti-CD8 antibodies conjugated to paramagnetic particles. The depletion procedure was performed on a fully automated CliniMACS (R) device according to the manufacturer's instructions. On average, patients received 2.17 x 10(6)/kg (range 0.9-3.48) γδ T cells with <1\% CD4-or CD8-positive cells remaining in the product. All patients received prior lymphopenia-inducing chemotherapy (fludarabine 20-25 mg/m(2) day -6 until day -2 and cyclophosphamide 30-60 mg/kg day -6 and -5) and were treated with 4 mg zoledronate on day 0 and 1.0x10(6) IU/m(2) IL-2 on day +1 until day +6 for the induction of gamma delta T cell proliferation in vivo. Results: This resulted in a marked in vivo expansion of donor γδ T cells and, to a lower extent, natural killer cells and double-negative αβ T cells (mean 68-fold, eight-fold, and eight-fold, respectively). Proliferation peaked by around day +8 and donor cells persisted up to 28 days. Although refractory to all prior therapies, three out of four patients achieved a complete remission, which lasted for 8 months in a patient with plasma cell leukaemia. One patient died from an infection 6 weeks after treatment. Conclusion: This pilot study shows that adoptive transfer and in vivo expansion of haploidentical γδ T lymphocytes is feasible and suggests a potential role of these cells in the treatment of haematological diseases.}, language = {en} }