@unpublished{AuerhammerSchulzSchmiedeletal.2019, author = {Auerhammer, Nina and Schulz, Alexander and Schmiedel, Alexander and Holzapfel, Marco and Hoche, Joscha and R{\"o}hr, Merle I. S. and Mitric, Roland and Lambert, Christoph}, title = {Dynamic exciton localisation in a pyrene-BODIPY-pyrene dye conjugate}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198718}, year = {2019}, abstract = {The photophysics of a molecular triad consisting of a BODIPY dye and two pyrene chromophores attached in 2-position are investigated by steady state and fs-time resolved transient absorption spectroscopy as well as by field induced surface hopping (FISH) simulations. While the steady state measurements indicate moderate chromophore interactions within the triad, the time resolved measurements show upon pyrene excitation a delocalised excited state which localises onto the BODIPY chromophore with a time constant of 0.12 ps. This could either be interpreted as an internal conversion process within the excitonically coupled chromophores or as an energy transfer from the pyrenes to the BODIPY dye. The analysis of FISH-trajectories reveals an oscillatory behaviour where the excitation hops between the pyrene units and the BODIPY dye several times until finally they become localised on the BODIPY chromophore within 100 fs. This is accompanied by an ultrafast nonradiative relaxation within the excitonic manifold mediated by the nonadiabatic coupling. Averaging over an ensemble of trajectories allowed us to simulate the electronic state population dynamics and determine the time constants for the nonradiative transitions that mediate the ultrafast energy transfer and exciton localisation on BODIPY.}, language = {en} } @article{HattoriMichailSchmiedeletal.2019, author = {Hattori, Yohei and Michail, Evripidis and Schmiedel, Alexander and Moos, Michael and Holzapfel, Marco and Krummenacher, Ivo and Braunschweig, Holger and M{\"u}ller, Ulrich and Pflaum, Jens and Lambert, Christoph}, title = {Luminescent Mono-, Di-, and Tri-radicals: Bridging Polychlorinated Triarylmethyl Radicals by Triarylamines and Triarylboranes}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {68}, doi = {10.1002/chem.201903007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208162}, pages = {15463-15471}, year = {2019}, abstract = {Up to three polychlorinated pyridyldiphenylmethyl radicals bridged by a triphenylamine carrying electron withdrawing (CN), neutral (Me), or donating (OMe) groups were synthesized and analogous radicals bridged by tris(2,6-dimethylphenyl)borane were prepared for comparison. All compounds were as stable as common closed-shell organic compounds and showed significant fluorescence upon excitation. Electronic, magnetic, absorption, and emission properties were examined in detail, and experimental results were interpreted using DFT calculations. Oxidation potentials, absorption and emission energies could be tuned depending on the electron density of the bridges. The triphenylamine bridges mediated intramolecular weak antiferromagnetic interactions between the radical spins, and the energy difference between the high spin and low spin states was determined by temperature dependent ESR spectroscopy and DFT calculations. The fluorescent properties of all radicals were examined in detail and revealed no difference for high and low spin states which facilitates application of these dyes in two-photon absorption spectroscopy and OLED devices.}, language = {en} }