@article{ScheitlLangeHoebartner2020, author = {Scheitl, Carolin P. M. and Lange, Sandra and H{\"o}bartner, Claudia}, title = {New deoxyribozymes for the native ligation of RNA}, series = {Molecules}, volume = {25}, journal = {Molecules}, number = {16}, doi = {https://doi.org/10.3390/molecules25163650}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210405}, year = {2020}, abstract = {Deoxyribozymes (DNAzymes) are small, synthetic, single-stranded DNAs capable of catalysing chemical reactions, including RNA ligation. Herein, we report a novel class of RNA ligase deoxyribozymes that utilize 5'-adenylated RNA (5'-AppRNA) as the donor substrate, mimicking the activated intermediates of protein-catalyzed RNA ligation. Four new DNAzymes were identified by in vitro selection from an N40 random DNA library and were shown to catalyze the intermolecular linear RNA-RNA ligation via the formation of a native 3'-5'-phosphodiester linkage. The catalytic activity is distinct from previously described RNA-ligating deoxyribozymes. Kinetic analyses revealed the optimal incubation conditions for high ligation yields and demonstrated a broad RNA substrate scope. Together with the smooth synthetic accessibility of 5'-adenylated RNAs, the new DNA enzymes are promising tools for the protein-free synthesis of long RNAs, for example containing precious modified nucleotides or fluorescent labels for biochemical and biophysical investigations.}, language = {en} }