@phdthesis{Beer2011, author = {Beer, Meike Vanessa}, title = {Correlation of ligand density with cell behavior on bioactive hydrogel layers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74454}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Diese Arbeit besch{\"a}ftigte sich mit der Quantifizierung von Zelladh{\"a}sion vermittelnden Liganden in und auf d{\"u}nnen Hydrogelschichten, die zur Oberfl{\"a}chenmodifizierung auf Biomaterialien aufgebracht wurden. Das bereits etablierte und gut charakterisierte inerte NCO-sP(EO-stat-PO) Hydrogelsystem, das eine einfache und reproduzierbare Bioaktivierung mit Peptiden erlaubt, wurde als Basis f{\"u}r diese Arbeit verwendet. Diese Hydrogele k{\"o}nnen auf zwei Weisen funktionalisiert werden. Liganden k{\"o}nnen entweder mit der Prepolymerl{\"o}sung vor der Beschichtung gemischt (Einmischmethode) oder frische Hydrogelschichten mit einer Ligandenl{\"o}sung inkubiert werden (Inkubationsmethode). Der erste Teil dieser in drei Hauptteile unterteilten Arbeit, besch{\"a}ftigte sich mit der Konzentrationsbestimmung der Liganden in der gesamten Tiefe der Hydrogelschicht, w{\"a}hrend sich der zweite Teil auf die oberfl{\"a}chensensitive Quantifizierung von Zelladh{\"a}sion vermittelnden Molek{\"u}len an der biologischen Grenzfl{\"a}che konzentrierte. Die Ergebnisse wurden mit Zelladh{\"a}sionskinetiken verglichen. Der dritte Teil dieser Arbeit besch{\"a}ftigte sich mit der biochemischen als auch strukturellen Nachahmung der komplexen Extrazellul{\"a}rmatrix (ECM). Das ECM Protein Fibronektin (FN) wurde {\"u}ber Zucker-Lektin Anbindung pr{\"a}sentiert und Zellverhalten auf diesen biomimetischen Oberfl{\"a}chen untersucht. Ebenfalls wurde Zellverhalten in einer dreidimensionalen Faserumgebung mit identischer Oberfl{\"a}chenchemie wie in den beiden ersten Teilen dieser Arbeit untersucht und mit der Peptidkonzentration korreliert. Insgesamt, war die Hauptfragestellung in dieser Arbeit 'Wie viel?', d.h. einerseits die Ermittlung der maximalen, als auch der f{\"u}r Zelladh{\"a}sion optimalen Ligandendichte. Im ersten praktischen Teil der vorliegenden Arbeit (Klassische Quantifizierung) wurden Liganden in der gesamten Hydrogelschicht, als auch speziell in oberen Bereichen der Schichten quantifiziert. Die Untersuchung der Hydrogelschichten in Wellplatten und auf Glas funktionalisiert mit GRGDS und 125I-YRGDS erfolgte in Kapitel 3 mittels Radioaktivmessung. Wurden Hydrogelschichten mittels Inkubationsmethode funktionalisiert, konnte eine S{\"a}ttigung mit Liganden bei etwa 600 µg/mL ermittelt werden. Mittels Einmischmethode funktionalisierte Hydrogele erreichten keine maximale Ligandenkonzentration in den Schichten, mit dem Verh{\"a}ltnis 2/1 als maximales verwendetes Verh{\"a}ltnis. H{\"o}here Liganden zu Prepolymer Verh{\"a}ltnisse als 2/1 wurden jedoch nicht verwendet, um eine ausreichende Vernetzung der Hydrogele nicht zu gef{\"a}hrden. Zur Detektion mittels R{\"o}ntgenphotoelektronenspektroskopie (XPS) und Flugzeit-Sekund{\"a}rionen-Massen-spektrometrie (TOF-SIMS) (Kapitel 4) wurden eine fluorierte Aminos{\"a}ure und ein iodiertes Peptid mit den Prepolymeren in molaren Verh{\"a}ltnissen von 1/2, 1/1 und 2/1 gemischt. Beide Methoden ermittelten eine maximale Ligandenkonzentration bei Verh{\"a}ltnissen von 1/1. Zus{\"a}tzliche Liganden (2/1) f{\"u}hrten zu keiner vermehrten Anbindung. Wesentlich im Zusammenhang mit der Ligandenquantifizierung auf Biomaterialien ist, diese an der Oberfl{\"a}che, die f{\"u}r Zellen zug{\"a}nglich ist, durchzuf{\"u}hren. Im zweiten Teil dieser Arbeit (Oberfl{\"a}chensensitive Quantifizierung) kamen daher Methoden zum Einsatz, die Liganden ausschließlich auf der Oberfl{\"a}che quantifizierten. Zur Detektion mit Oberfl{\"a}chenplasmon-resonanz (SPR) und akustischer Oberfl{\"a}chenwellentechnologie (SAW) in Kapitel 5 musste die Standardbeschichtung der Hydrogele von Glas und Silikon auf Cystamin funktionalisierte Goldoberfl{\"a}chen {\"u}bertragen werden. Mittels Ellipsometrie und Rasterkraftmikroskopie (AFM) konnte nur eine d{\"u}nne und inhomogene Hydrogelbeschichtung nachgewiesen werden. Dennoch zeigten SPR und SAW die Unterbindung von Serum und Streptavidin (SA) Adsorption auf nicht funktionalisierten Schichten, jedoch eine spezifische und konzentrationsabh{\"a}ngige SA Bindung auf Hydrogelschichten, die mit Biocytin und GRGDSK-biotin funktionalisiert wurden. Die Ligandenquantifizierung mittels Enzymgekoppeltem Immunadsorptionstest (ELISA) und Enzymgekoppelten Lektinadsorptionstest (ELLA) (Kapitel 6) wurde auf Hydrogelschichten in Wellplatten und auf Glas angewendet, die mit verschiedenen Liganden mittels Inkubation und Einmischung funktionalisiert wurden. Das Modellmolek{\"u}l Biocytin, das biotinylierte Peptid GRGDSK-biotin, das ECM Protein Fibronektin (FN), als auch die Modellzucker N-Acetyl-glukosamin (GlcNAc) und N-Acetyllaktosamin (LacNAc) konnten spezifisch in verschiedenen Konzentrationen nachgewiesen werden. Beispielhaft seien hier Schichten auf Glas genannt, die mittels Einmischmethode mit GRGDSK-biotin funktionalisiert wurden, da diese zum Vergleich in Kapitel 8 herangezogen wurden. Auf diesen Oberfl{\"a}chen wurde eine maximale Peptidkonzentration auf der Oberfl{\"a}che bei einem Peptid zu Prepolymer Verh{\"a}ltnis von 1/5 ermittelt. Neben diesen verschiedenen Quantifzierungsmethoden ist die in vitro Analyse mit Zellen nicht zu vernachl{\"a}ssigen (Kapitel 7). Hierzu wurden Hydrogele auf Glas aufgebracht und mit GRGDS mittels Einmischmethode funktionalisiert. Durch Z{\"a}hlen adh{\"a}renter prim{\"a}rer humaner dermaler Fibroblasten (HDF) auf Mikroskopbildern wurde eine maximale Zelladh{\"a}sion bei dem Peptid zu Prepolymer Verh{\"a}ltnis von 1/5 festgestellt. Hingegen wurde ein Verh{\"a}ltnis von 1/2 f{\"u}r optimale Zelladh{\"a}sion ermittelt, wenn Zellen zur Quantifizierung von den Hydrogelen abgel{\"o}st und im CASY® Zellz{\"a}hler quantifiziert wurden. Zus{\"a}tzlich wurde die Zellvitalit{\"a}t durch Messung intrazellul{\"a}rer Enzymaktivit{\"a}ten gemessen, jedoch konnte kein Zusammenhang zwischen Zellvitalit{\"a}t und GRGDS Konzentration hergestellt werden. Adh{\"a}rente HDFs waren in allen F{\"a}llen vital, unabh{\"a}ngig von der Ligandenkonzentration auf der Oberfl{\"a}che. Auch die Mausfibroblasten Zelllinie NIH L929 wurde auf Hydrogelen mit verschiedenen GRGDS zu Prepolymer Verh{\"a}ltnissen durch Z{\"a}hlen adh{\"a}renter Zellen auf Mikroskopbildern untersucht. Diese im Verh{\"a}ltnis zu HDFs wesentlich kleineren Mauszellen ben{\"o}tigten h{\"o}here GRGDS Konzentrationen (2/1) f{\"u}r maximale Zelladh{\"a}sion. Nach der Ligandenquantifizierung in Kapitel 3 bis 7, wurden diese Ergebnisse in Kapitel 8 miteinander verglichen. Hierzu wurden Messungen auf Hydrogelschichten verwendet, die mittels Einmischmethode funktionalisiert wurden. W{\"a}hrend die Quantifizierung mittels Radioaktivmessung in der gesamten Tiefe der Hydrogelschichten keine maximale Ligandenkonzentration ermitteln konnte, war in den oberen Bereichen der Schicht ein Maximum an Liganden bei 1/1 festzustellen (XPS, TOF-SIMS). SPR und SAW wurden zum Vergleich nicht herangezogen, da die Beschichtung auf Gold erst optimiert werden muss. Oberfl{\"a}chensensitive Quantifizierung mittels ELISA und Zelladh{\"a}sion, die lediglich die sterisch zug{\"a}nglichen Liganden auf einer Oberfl{\"a}che nachweisen, ergaben {\"u}bereinstimmend eine optimale Ligandenkonzentration f{\"u}r SA Bindung und Zelladh{\"a}sion bei einem Peptid zu Prepolymer Verh{\"a}ltnis von 1/5. Dies unterstreicht, wie wichtig der Vergleich der Methoden, als auch die Verwendung von oberfl{\"a}chensensitiven Methoden ist. Der dritten Teil dieser Arbeit besch{\"a}ftigte sich mit der biochemischen und strukturellen Nachahmung der komplexen extrazellul{\"a}ren Umgebung (Advanced ECM engineering), ein wichtiger Aspekt in der Biomaterialforschung, da zum gr{\"o}ßten Teil zwei-dimensionale Biomaterialien zum Einsatz kommen, die direkt mit Liganden kovalent funktionalisiert werden. Die ECM ist jedoch um ein Vielfaches komplexer und die bestm{\"o}gliche Nachahmung ist Voraussetzung f{\"u}r eine bessere Akzeptanz durch Zellen und Gewebe. In Kapitel 9 wurde eine M{\"o}glichkeit aufgezeigt, das ECM Protein FN nicht-kovalent {\"u}ber Zucker-Lektinbindungen zu immobilisieren. Ein Schichtaufbau von Hydrogel, dem darauf durch Mikrokontakt-druckverfahren (MCP) kovalent gebundenen Zucker Poly-N-Acetyllaktosamin (polyLacNAc) und den darauf nicht-kovalent gebundenen Galektin His6CGL2 und FN, konnte mit Fluoreszenzf{\"a}rbung elegant nachgewiesen werden. Optimale Konzentrationen f{\"u}r den Schichtaufbau wurden mittels ELLA/ELISA auf Hydrogelschichten ermittelt, die durch Inkubation mit dem Zucker funktionalisiert wurden. Nur der komplette Schichtaufbau konnte zufriedenstellende HDF Adh{\"a}sion vermitteln und im Vergleich zu Zellkulturpolystyrol (TCPS) Oberfl{\"a}chen konnten HDFs auf dem biomimetischen Schichtaufbau schneller adh{\"a}rieren und spreiten. Zudem wurde die Umorganisierung von auf Glas adsorbiertem FN, auf NCO-sP(EO-stat-PO) kovalent gebundenem FN und biomimetisch {\"u}ber polyLAcNAc-His6CGL2 gebundenem FN durch HDFs verglichen. Nur auf den biomimetischen Oberfl{\"a}chen schien eine Umorganisation durch die Zellen m{\"o}glich, wie sie auch in der ECM zu finden ist. Diese biomimetische und flexible Pr{\"a}sentation eines Proteins erwies sich als vielversprechende M{\"o}glichkeit eine biomimetischere Oberfl{\"a}che f{\"u}r Zellen zu schaffen, die eine optimale Biokompatibilit{\"a}t erm{\"o}glichen k{\"o}nnte. Auch die strukturelle Nachahmung der ECM ist eine vielversprechende Strategie zum Nachbau der ECM. In Kapitel 10 wurde ein Einschrittverfahren zur Herstellung synthetischer, bioaktiver und degradierbarer Faserkonstrukte durch Elektrospinnen zur Nachahmung der ECM pr{\"a}sentiert. In diesem System wurden durch Zugabe von NCO-sP(EO-stat-PO) als reaktives Additiv zu Poly(D,L-laktid-co-Glycolid) (PLGA) Fasern hergestellt, die mit einer ultrad{\"u}nnen, inerten Hydrogelschicht versehen waren. Es konnte gezeigt werden, dass durch die Verwendung von NCO-sP(EO-stat-PO) als Additiv die Adsorption von Rinderserumalbumin (BSA) im Vergleich zu PLGA um 99,2\% reduziert, die Adh{\"a}sion von HDFs verhindert und die Adh{\"a}sion von humanen mesenchymalen Stammzellen (MSC) minimiert werden konnten. Spezifische Bioaktivierung wurde durch Zugabe von Peptidsequenzen zur Spinl{\"o}sung erreicht, welche kovalent in die Hydrogelschicht eingebunden werden konnten und kontrollierte Zell-Faser Interaktionen erm{\"o}glichten, Um die spezifische Zelladh{\"a}sion an solchen inerten Fasern zu erzielen, wurde GRGDS kovalent auf der Faseroberfl{\"a}che gebunden. Dies erfolgte durch Zugabe des Peptids zur Polymerl{\"o}sung vor dem Elektrospinnen. Als Negativkontrolle wurde die Peptidsequenz GRGES an die Faseroberfl{\"a}che gebunden, welche durch Zellen nicht erkannt wird. W{\"a}hrend die Verhinderung unspezifischer Proteinadsorption f{\"u}r die Peptidmodifizierten Fasern erhalten blieb, konnten HDFs lediglich auf den mit GRGDS Peptid modifizierten Fasern adh{\"a}rieren, proliferieren und nach zwei Wochen eine konfluente Zellschicht aus vitalen Zellen bilden. Zus{\"a}tzlich konnten MSCs auf GRGDS funktionalisierten Fasern adh{\"a}rieren. Liganden konnten auf Fasern quantifiziert werden, indem die ELISA Technik aus Kapitel 6 auf Faseroberfl{\"a}chen transferiert wurde. Um das Potential der biochemischen und strukturellen Nachbildung der ECM aufzuzeigen, wurden beide Ans{\"a}tze miteinander kombiniert. Die Immobilisierung von polyLacNAc auf die Hydrogelfasern durch Inkubation und der Schichtaufbau mit His6CGL2 und FN resultierte in HDF Adh{\"a}sion.}, subject = {Hydrogel}, language = {en} }