@article{RestMayoralFernandez2013, author = {Rest, Christina and Mayoral, Mar{\´i}a Jos{\´e} and Fern{\´a}ndez, Gustavo}, title = {Aqueous Self-Sorting in Extended Supramolecular Aggregates}, series = {International Journal of Molecular Sciences}, volume = {14}, journal = {International Journal of Molecular Sciences}, number = {1}, doi = {10.3390/ijms14011541}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129435}, pages = {1541-1565}, year = {2013}, abstract = {Self-organization and self-sorting processes are responsible for the regulation and control of the vast majority of biological processes that eventually sustain life on our planet. Attempts to unveil the complexity of these systems have been devoted to the investigation of the binding processes between artificial molecules, complexes or aggregates within multicomponent mixtures, which has facilitated the emergence of the field of self-sorting in the last decade. Since, artificial systems involving discrete supramolecular structures, extended supramolecular aggregates or gel-phase materials in organic solvents or—to a lesser extent—in water have been investigated. In this review, we have collected diverse strategies employed in recent years to construct extended supramolecular aggregates in water upon self-sorting of small synthetic molecules. We have made particular emphasis on co-assembly processes in binary mixtures leading to supramolecular structures of remarkable complexity and the influence of different external variables such as solvent and concentration to direct recognition or discrimination processes between these species. The comprehension of such recognition phenomena will be crucial for the organization and evolution of complex matter.}, language = {en} } @phdthesis{SafontSempere2010, author = {Safont Sempere, Marina Montserrat}, title = {Chiral self-sorting of atropo-enantiomeric perylene bisimide dyes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55359}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {This thesis included the synthesis of conformationally stable chiral perylene bisimide (PBI) dyes, the study of their optical properties in solution and their chiral self-sorting behaviour in nonpolar solvents in which dimerization via pi-pi-stacking takes place. Furthermore, the influence of PBI core chirality on the properties of these dyes in the condensed state has been also studied. We have demonstrated and quantified the prevalence of chiral self-recognition over self-discrimination in pi-stacking dimerization of PBIs. It has been shown that this self-recognition event is compromised by the increasing flexibility of the structures related to the size of the OEG bridging units. Moreover, the inherent chirality of these PBIs has been proven to strongly influence their condensed state properties, for which large differences between the pure enantiomers and the racemates were revealed, as well as between the different bridged macrocyclic PBIs.}, subject = {Farbstoff}, language = {en} }