@phdthesis{Eck2024, author = {Eck, Philipp}, title = {Symmetry Breaking and Spin-Orbit Interaction on the Triangular Lattice}, doi = {10.25972/OPUS-35918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359186}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Since the prediction of the quantum spin Hall effect in graphene by Kane and Mele, \(Z_2\) topology in hexagonal monolayers is indissociably linked to high-symmetric honeycomb lattices. This thesis breaks with this paradigm by focusing on topological phases in the fundamental two-dimensional hexagonal crystal, the triangular lattice. In contrast to Kane-Mele-type systems, electrons on the triangular lattice profit from a sizable, since local, spin-orbit coupling (SOC) and feature a non-trivial ground state only in the presence of inversion symmetry breaking. This tends to displace the valence charge form the atomic position. Therefore, all non-trivial phases are real-space obstructed. Inspired by the contemporary conception of topological classification of electronic systems, a comprehensive lattice and band symmetry analysis of insulating phases of a \(p\)-shell on the triangular lattice is presented. This reveals not only the mechanism at the origin of band topology, the competition of SOC and symmetry breaking, but sheds also light on the electric polarization arising from a displacement of the valence charge centers from the nuclei, i. e., real-space obstruction. In particular, the competition of SOC versus horizontal and vertical reflection symmetry breaking gives rise to four topologically distinct insulating phases: two kinds of quantum spin Hall insulators (QSHI), an atomic insulator and a real-space obstructed higher-order topological insulator. The theoretical analysis is complemented with state-of-the-art first principles calculations and experiments on trigonal monolayer adsorbate systems. This comprises the recently discovered triangular QSHI indenene, formed by In atoms, and focuses on its topological classification and real-space obstruction. The analysis reveals Kane-Mele-type valence bands which profit from the atomic SOC of the triangular lattice. The realization of a HOTI is proposed by reducing SOC by considering lighter adsorbates. Further the orbital Rashba effect is analyzed in AgTe, a consequence of mirror symmetry breaking, the formation of local angular momentum polarization and SOC. As an outlook beyond topology, the Fermi surface and electronic susceptibility of Group V adsorbates on silicon carbide are investigated. In summary, this thesis elucidates the interplay of symmetry breaking and SOC on the triangular lattice, which can promote non-trivial insulating phase.}, subject = {Topologie}, language = {en} } @phdthesis{Kowalski2023, author = {Kowalski, Alexander Anton}, title = {Multi-orbital quantum phenomena: from magnetic impurities to lattice models with strong Hund's coupling}, doi = {10.25972/OPUS-34587}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-345878}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Strong correlations caused by interaction in systems of electrons can bring about unusual physical phenomena due to many-body quantum effects that cannot properly be captured by standard electronic structure methods like density functional theory. In this thesis, we apply the state-of-the-art continuous-time quantum Monte Carlo algorithm in hybridization expansion (CT-HYB) for the strongly correlated multi-orbital Anderson impurity model (AIM) to the solution of models of magnetic impurities on metallic surfaces and, via dynamical mean-field theory (DMFT), to the solution of a lattice model, the multi-orbital Hubbard model with Hund's coupling. A concise introduction to the theoretical background focuses on information directly relevant to the understanding of applied models, methods, and the interpretation of results. It starts with a discussion of the AIM with its parameters and its solution in the path integral formalism, the basis of the CT-HYB algorithm. We consider its derivation and implementation in some detail before reviewing the DMFT approach to correlated lattice models and the interpretation of the single-particle Green's function. We review two algorithmic developments for the CT-HYB algorithm that help to increase the performance of calculations especially in case of a complex structure of the interaction matrix and allow the precise calculation of self-energies and vertex functions also at intermediate and higher frequencies. Our comparative analysis of Kondo screening in the cobalt on copper impurity system points out the importance of an accurate interaction matrix for qualitatively correct Kondo temperatures and the relevance of all d-orbitals in that case. Theoretical modeling of cobalt impurities in copper "atomic wires" fails to reproduce variations and partial absence of Kondo resonances depending on the wire size. We analyze the dependence of results on parameters and consider possible reasons for the discrepancy. Different Kondo temperatures of iron adatoms adsorbed on clean or oxygen-reconstructed niobium in the normal state are qualitatively reproduced, with the adsorption distance identified as major factor and implications for the superconducting state pointed out. Moving on to lattice problems, we demonstrate the connection between Hund's coupling, shown to cause first-order character of the interaction-driven Mott transition at half-filling in the two-orbital Hubbard model, and a phase separation zone ending in a quantum critical point at finite doping. We touch on similarities in realistic models of iron-pnictide superconductors. We analyze the manifestation of the compressibility divergence at the finite-temperature critical points away from half-filling in the eigenbasis of the two-particle generalized susceptibility. A threshold for impurity susceptibility eigenvalues that indicates divergence of the DMFT lattice compressibility and distinguishes thermodynamic stability and instability of DMFT solutions is determined.}, subject = {Starke Kopplung}, language = {en} } @phdthesis{Helbig2023, author = {Helbig, Tobias Thimo}, title = {Theory of eigenstate thermalization}, doi = {10.25972/OPUS-32996}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-329968}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Next to the emergence of nearly isolated quantum systems such as ultracold atoms with unprecedented experimental tunability, the conceptualization of the eigenstate thermalization hypothesis (ETH) by Deutsch and Srednicki in the late 20th century has sparked exceptional interest in the mechanism of quantum thermalization. The ETH conjectures that the expectation value of a local observable within the quantum state of an isolated, interacting quantum system converges to the thermal equilibrium value at large times caused by a loss of phase coherence, referred to as dephasing. The thermal behavior within the quantum expectation value is traced back to the level of individual eigenstates, who locally act as a thermal bath to subsystems of the full quantum system and are hence locally indistinguishable to thermal states. The ETH has important implications for the understanding of the foundations of statistical mechanics, the quantum-to-classical transition, and the nature of quantum entanglement. Irrespective of its theoretical success, a rigorous proof has remained elusive so far. \$\$ \ \$\$ An alternative approach to explain thermalization of quantum states is given by the concept of typicality. Typicality deals with typical states \(\Psi\) chosen from a subspace of Hilbert space with energy \(E\) and small fluctuations \(\delta\) around it. It assumes that the possible microstates of this subspace of Hilbert space are uniformly distributed random vectors. This is inspired by the microcanonical ensemble in classical statistical mechanics, which assumes equal weights for all accessible microstates with energy \(E\) within an energy allowance \(\delta\). It follows from the ergodic hypothesis, which states that the time spent in each part of phase space is proportional to its volume leading to large time averages being equated to ensemble averages. In typicality, the Hilbert space of quantum mechanics is hence treated as an analogue of classical phase space where statistical and thermodynamic properties can be defined. Since typicality merely shifts assumptions of statistical mechanics to the quantum realm, it does not provide a complete understanding of the emergence of thermalization on a fundamental microscopic level. \$\$ \ \$\$ To gain insights on quantum thermalization and derive it from a microscopic approach, we exclusively consider the fundamental laws of quantum mechanics. In the joint work with T. Hofmann, R. Thomale and M. Greiter, on which this thesis reports, we explore the ETH in generic local Hamiltonians in a two-dimensional spin-\(1/2\) lattice with random nearest neighbor spin-spin interactions and random on-site magnetic fields. This isolated quantum system is divided into a small subsystem weakly coupled to the remaining part, which is assumed to be large and which we refer to as bath. Eigenstates of the full quantum system as well as the action of local operators on those can then be decomposed in terms of a product basis of eigenstates of the small subsystem and the bath. Central to our analysis is the fact that the coupling between the subsystem and the bath, represented in terms of the uncoupled product eigenbasis, is given by an energy dependent random band matrix, which is obtained from both analytical and numerical considerations. \$\$ \ \$\$ Utilizing the methods of Dyson-Brownian random matrix theory for random band matrices, we analytically show that the overlaps of eigenstates of the full quantum system with the uncoupled product eigenbasis are described by Cauchy-Lorentz distributions close to their respective peaks. The result is supported by an extensive numerical study using exact diagonalization, where the numerical parameters for the overlap curve agree with the theoretical calculation. The information on the decomposition of the eigenstates of the full quantum system enables us to derive the reduced density matrix within the small subsystem given the pure density matrix of a single eigenstate. We show that in the large bath limit the reduced density matrix converges to a thermal density matrix with canonical Boltzmann probabilities determined by renormalized energies of the small subsystem which are shifted from their bare values due the influence of the coupling to the bath. The behavior of the reduced density matrix is confirmed through a finite size scaling analysis of the numerical data. Within our calculation, we make use of the pivotal result, that the density of states of a local random Hamiltonian is given by a Gaussian distribution under very general circumstances. As a consequence of our analysis, the quantum expectation value of any local observable in the subsystem agrees with its thermal expectation value, which proves the validity of the ETH in the equilibrium phase for the considered class of random local Hamiltonians and elevates it from hypothesis to theory. \$\$ \ \$\$ Our analysis of quantum thermalization solely relies on the application of quantum mechanics to large systems, locality and the absence of integrability. With the self-averaging property of large random matrices, random matrix theory does not entail a statistical assumption, but is rather applied as a mathematical tool to extract information about the behavior of large quantum systems. The canonical distribution of statistical mechanics is derived without resorting to statistical assumptions such as the concepts of ergodicity or maximal entropy, nor assuming any characteristics of quantum states such as in typicality. In future research, with this microscopic approach it may become possible to exactly pinpoint the origin of failure of quantum thermalization, e.g. in systems that exhibit many body localization or many body quantum scars. The theory further enables the systematic investigation of equilibration, i.e. to study the time scales on which thermalization takes place.}, subject = {Thermalisierung}, language = {en} } @phdthesis{Weigel2023, author = {Weigel, Anna-Lena}, title = {Spacetime Geometry from Quantum Circuits and Berry Phases in AdS/CFT}, doi = {10.25972/OPUS-32748}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327481}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {In this thesis, I establish new relations between quantum information measures in a two-dimensional CFT and geometric objects in a three-dimensional AdS space employing the AdS/CFT correspondence. I focus on two quantum information measures: the computational cost of quantum circuits in a CFT and Berry phases in two entangled CFTs. In particular, I show that these quantities are associated with geometric objects in the dual AdS space.}, subject = {AdS-CFT-Korrespondenz}, language = {en} } @phdthesis{Mayer2023, author = {Mayer, Julian Benedikt}, title = {Topological phases in Luttinger materials}, doi = {10.25972/OPUS-32736}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-327368}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The hunt for topological materials is one of the main topics of recent research in condensed matter physics. We analyze the 4-band Luttinger model, which considers the total angular momentum \(j = 3/2\) hole states of many semiconductors. Our analysis shows that this model hosts a wide array of topological phases and allows analytical calculations of the related topological surface states. The existence of these surface states is highly desired due to their strong protection against perturbations. In the first part of the thesis, we predict the existence of either one or two two-dimensional (2D) surface states of topological origin in the three-dimensional (3D) quadratic-node semimetal phase of the Luttinger model, called the Luttinger semimetal phase. We associate the origin of these states with the inverted order of s and p-orbital states in the band structure and approximate chiral symmetry around the node. Hence, our findings are essential for many materials, including HgTe, α-Sn, and iridate compounds. Such materials are often modified with strain engineering by growing the crystal on a substrate with a different lattice constant, which adds a deformation potential to the electrons. While tensile strain is often used to drive such materials into a gapped topological insulator regime, we apply compressive strain to induce a topological semimetal regime. Here, we differentiate between Dirac and Weyl semimetals based on inversion and time-reversal symmetry being simultaneously present or not. One major part of this thesis is the theoretical study of the evolution of the Luttinger semimetal surface states in these topological semimetal phases. The relative strength of the compressive strain and typical bulk inversion asymmetry (BIA) terms allow the definition of a symmetry hierarchy in the system. The cubic symmetric \(O_h\) Luttinger model is the highest symmetry low-energy parent model. Since the BIA terms in the Weyl semimetal phase are small in most materials, we find a narrow energy and momentum range around the Weyl points where the surface states form Fermi arcs between two Weyl nodes with opposite chirality. Consequently, we see 2D momentum planes between the Weyl points, which can be considered as effective 2D Chern insulators with chiral edge states connecting the valence and conduction band in the bulk gap. Exceeding the range of the BIA terms, the compressive strain becomes dominating, and the system behaves like a Dirac semimetal with two doubly degenerate linear Dirac nodes in the band structure. For energies larger than the compressive strain strength, the quadratic terms in the Luttinger model dominate and surface band structure is indistinguishable from an unperturbed Luttinger semimetal. To conclude this symmetry hierarchy, we analyze the limit of the Luttinger model when the remote \(j = 1/2\) electron states show a considerable hybridization with the \(j = 3/2\) hole states around the Fermi level. Here, the Luttinger model is not valid anymore and one needs to consider more complicated models, like the 6-band Kane Hamiltonian. In the second part of this thesis, we analyze theoretically two different setups for s-wave superconductivity proximitized \(j = 3/2\) particles in Luttinger materials under a magnetic field. First, we explore a one-dimensional wire setup, where the intrinsic BIA of inversion asymmetric crystals opens a topological gap in the bulk states. In contrast to wires, modeled by a quadratic dispersion with Rashba or Dresselhaus spin-orbit coupling, we find two topological phase transitions due to the different effects of magnetic fields to \(|j_z| = 3/2\) heavy-hole (HH) and \(|j_z| = 1/2\) light-hole (LH) states. Second, we discuss a two-dimensional Josephson junction setup, where we find Andreev-bound states inside the superconducting gap. Here, the intrinsic spin-orbit coupling of the Luttinger model is sufficient to open a topological gap even in the presence of inversion symmetry. This originates from the hybridization of the light and heavy-hole bands in combination with the superconducting pairing. Consequently, both setups can form Majorana-bound states at the boundaries of the system. The existence of these states are highly relevant in the scientific community due to their nonabelian braiding statistics and stability against decoherence, making them a prime candidate for the realization of topological quantum computation. Majorana-bound states form at zero energy and are protected by the topological gap. We predict that our findings of the topological superconductor phase of the Luttinger model are valid for both semimetal and metal phases. Hence, our study is additionally relevant for metallic systems, like p-doped GaAs. This opens a new avenue for the search for topological superconductivity.}, language = {en} } @phdthesis{Banik2023, author = {Banik, Amitayus}, title = {Two Approaches to the Baryon Asymmetry of the Universe}, doi = {10.25972/OPUS-32046}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320468}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Explaining the baryon asymmetry of the Universe has been a long-standing problem of particle physics, with the consensus being that new physics is required as the Standard Model (SM) cannot resolve this issue. Beyond the Standard Model (BSM) scenarios would need to incorporate new sources of \(CP\) violation and either introduce new departures from thermal equilibrium or modify the existing electroweak phase transition. In this thesis, we explore two approaches to baryogenesis, i.e. the generation of this asymmetry. In the first approach, we study the two-particle irreducible (2PI) formalism as a means to investigate non-equilibrium phenomena. After arriving at the renormalised equations of motions (EOMs) to describe the dynamics of a phase transition, we discuss the techniques required to obtain the various counterterms in an on-shell scheme. To this end, we consider three truncations up to two-loop order of the 2PI effective action: the Hartree approximation, the scalar sunset approximation and the fermionic sunset approximation. We then reconsider the renormalisation procedure in an \(\overline{\text{MS}}\) scheme to evaluate the 2PI effective potential for the aforementioned truncations. In the Hartree and the scalar sunset approximations, we obtain analytic expressions for the various counterterms and subsequently calculate the effective potential by piecing together the finite contributions. For the fermionic sunset approximation, we obtain similar equations for the counterterms in terms of divergent parts of loop integrals. However, these integrals cannot be expressed in an analytic form, making it impossible to evaluate the 2PI effective potential with the fermionic contribution. Our main results are thus related to the renormalisation programme in the 2PI formalism: \( (i) \)the procedure to obtain the renormalised EOMs, now including fermions, which serve as the starting point for the transport equations for electroweak baryogenesis and \( (ii) \) the method to obtain the 2PI effective potential in a transparent manner. In the second approach, we study baryogenesis via leptogenesis. Here, an asymmetry in the lepton sector is generated, which is then converted into the baryon asymmetry via the sphaleron process in the SM. We proceed to consider an extension of the SM along the lines of a scotogenic framework. The newly introduced particles are charged odd under a \(\mathbb{Z}_2\) symmetry, and masses for the SM neutrinos are generated radiatively. The \(\mathbb{Z}_2\) symmetry results in the lightest BSM particle being stable, allowing for a suitable dark matter (DM) candidate. Furthermore, the newly introduced heavy Majorana fermionic singlets provide the necessary sources of \(CP\) violation through their Yukawa interactions and their out-of-equilibrium decays produce a lepton asymmetry. This model is constrained from a wide range of observables, such as consistency with neutrino oscillation data, limits on branching ratios of charged lepton flavour violating decays, electroweak observables and obtaining the observed DM relic density. We study leptogenesis in this model in light of the results of a Markov chain Monte Carlo scan, implemented in consideration of the aforementioned constraints. Successful leptogenesis in this model, to account for the baryon asymmetry, then severely constrains the available parameter space.}, subject = {Baryonenasymmetrie}, language = {en} } @phdthesis{Schwemmer2023, author = {Schwemmer, Tilman}, title = {Relativistic corrections of Fermi surface instabilities}, doi = {10.25972/OPUS-31964}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319648}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Relativistic effects crucially influence the fundamental properties of many quantum materials. In the accelerated reference frame of an electron, the electric field of the nuclei is transformed into a magnetic field that couples to the electron spin. The resulting interaction between an electron spin and its orbital angular momentum, known as spin-orbit coupling (SOC), is hence fundamental to the physics of many condensed matter phenomena. It is particularly important quantitatively in low-dimensional quantum systems, where its coexistence with inversion symmetry breaking can lead to a splitting of spin degeneracy and spin momentum locking. Using the paradigm of Landau Fermi liquid theory, the physics of SOC can be adequately incorporated in an effective single particle picture. In a weak coupling approach, electronic correlation effects beyond single particle propagator renormalization can trigger Fermi surface instabilities such as itinerant magnetism, electron nematic phases, superconductivity, or other symmetry broken states of matter. In this thesis, we use a weak coupling-based approach to study the effect of SOC on Fermi surface instabilities and, in particular, superconductivity. This encompasses a weak coupling renormalization group formulation of unconventional superconductivity as well as the random phase approximation. We propose a unified formulation for both of these two-particle Green's function approaches based on the notion of a generalized susceptibility. In the half-Heusler semimetal and superconductor LuPtBi, both SOC and electronic correlation effects are prominent, and thus indispensable for any concise theoretical description. The metallic and weakly dispersive surface states of this material feature spin momentum locked Fermi surfaces, which we propose as a possible domain for the onset of unconventional surface superconductivity. Using our framework for the analysis of Fermi surface instability and combining it with ab-initio density functional theory calculations, we analyse the surface band structure of LuPtBi, and particularly its propensity towards Cooper pair formation. We study how the presence of strong SOC modifies the classification of two-electron wave functions as well as the screening of electron-electron interactions. Assuming an electronic mechanism, we identify a chiral superconducting condensate featuring Majorana edge modes to be energetically favoured over a wide range of model parameters.}, subject = {Supraleitung}, language = {en} } @phdthesis{Koerber2023, author = {K{\"o}rber, Simon Erhard}, title = {Correlated Topological Responses In Dynamical Synthetic Quantum Matter}, doi = {10.25972/OPUS-31671}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-316717}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The last years have witnessed an exciting scientific quest for intriguing topological phenomena in time-dependent quantum systems. A key to many manifestations of topology in dynamical systems relies on the effective dimensional extension by time-periodic drives. An archetypal example is provided by the Thouless pump in one spatial dimension, where a robust and quantized charge transport can be described in terms of an integer quantum Hall effect upon interpreting time as an extra dimension. Generalizing this fundamental concept to multifrequency driving, a variety of higher-dimensional topological models can be engineered in dynamical synthetic dimensions, where the underlying topological classification leads to quantized pumping effects in the associated lower-dimensional time-dependent systems. In this Thesis, we explore how correlations profoundly impact the topological features of dynamical synthetic quantum materials. More precisely, we demonstrate that the interplay of interaction and dynamical synthetic dimension gives rise to striking topological phenomena that go beyond noninteracting implementations. As a starting point, we exploit the Floquet counterpart of an integer quantum Hall scenario, namely a two-level system driven by two incommensurate frequencies. In this model, the topologically quantized response translates into a process in which photons of different frequencies are exchanged between the external modes, referred to as topological frequency conversion. We extend this prototypical setup to an interacting version, focusing on the minimal case of two correlated spins equally exposed to the external drives. We show that the topological invariant determining the frequency conversion can be changed by odd integers, something explicitly forbidden in the noninteracting limit of two identical spins. This correlated topological feature may, in turn, result in an enhancement of the quantized response. Robust response signals, such as those predicted for the topological frequency converter, are of fundamental interest for potential technological applications of topological quantum matter. Based on an open quantum system implementation of the frequency converter, we propose a novel mechanism of topological quantization coined ''topological burning glass effect''. Remarkably, this mechanism amplifies the local response of the driven two-level system by an integer that is proportional to the number of environmental degrees of freedom to which the system is strongly coupled. Specifically, our findings are illustrated by the extension of the frequency converter to a central spin model. There, the local energy transfer mediated exclusively by the central spin is significantly enhanced by the collective motion of the surrounding spins. In this sense, the central spin adopts the topological nature of the total system in its non-unitary dynamics, taking into account the correlations with the environment.}, subject = {Floquet-Theorie}, language = {en} } @phdthesis{Mueller2023, author = {M{\"u}ller, Tobias Leo Christian}, title = {Quantum magnetism in three dimensions: Exploring phase diagrams and real materials using Functional Renormalization}, doi = {10.25972/OPUS-31394}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313948}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Magnetism is a phenomenon ubiquitously found in everyday life. Yet, together with superconductivity and superfluidity, it is among the few macroscopically realized quantum states. Although well-understood on a quasi-classical level, its microscopic description is still far from being solved. The interplay of strong interactions present in magnetic condensed-matter systems and the non-trivial commutator structure governing the underlying spin algebra prevents most conventional approaches in solid-state theory to be applied. On the other hand, the quantum limit of magnetic systems is fertile land for the development of exotic phases of matter called spin-liquids. In these states, quantum fluctuations inhibit the formation of magnetic long-range order down to the lowest temperatures. From a theoretical point of view, spin-liquids open up the possibility to study their exotic properties, such as fractionalized excitations and emergent gauge fields. However, despite huge theoretical and experimental efforts, no material realizing spin-liquid properties has been unambiguously identified with a three-dimensional crystal structure. The search for such a realization is hindered by the inherent difficulty even for model calculations. As most numerical techniques are not applicable due to the interaction structure and dimensionality of these systems, a methodological gap has to be filled. In this thesis, to fill this void, we employ the pseudo-fermion functional renormalization group (PFFRG), which provides a scheme to investigate ground state properties of quantum magnetic systems even in three spatial dimensions. We report the status quo of this established method and extend it by alleviating some of its inherent approximations. To this end, we develop a multi-loop formulation of PFFRG, including hitherto neglected terms in the underlying flow equations consistently, rendering the outcome equivalent to a parquet approximation. As a necessary prerequisite, we also significantly improve the numerical accuracy of our implementation of the method by switching to a formulation respecting the asymptotic behavior of the vertex functions as well as employing state-of-the-art numerical algorithms tailored towards PFFRG. The resulting codebase was made publicly accessible in the open-source code PFFRGSolver.jl. We subsequently apply the technique to both model systems and real materials. Augmented by a classical analysis of the respective models, we scan the phase diagram of the three-dimensional body-centered cubic lattice up to third-nearest neighbor coupling and the Pyrochlore lattice up to second-nearest neighbor. In both systems, we uncover in addition to the classically ordered phases, an extended parameter regime, where a quantum paramagnetic phase appears, giving rise to the possibility of a quantum spin liquid. Additionally, we also use the nearest-neighbor antiferromagnet on the Pyrochlore lattice as well as the simple cubic lattice with first- and third-nearest neighbor couplings as a testbed for multi-loop PFFRG, demonstrating, that the inclusion of higher loop orders has quantitative effects in paramagnetic regimes and that the onset of order can be signaled by a lack of loop convergence. Turning towards material realizations, we investigate the diamond lattice compound MnSc\(_2\)S\(_4\), explaining on grounds of ab initio couplings the emergence of a spiral spin liquid at low temperatures, but above the ordering transition. In the Pyrochlore compound Lu\(_2\)Mo\(_2\)O\(_5\)N\(_2\), which is known to not magnetically order down to lowest temperatures, we predict a spin liquid state displaying a characteristic gearwheel pattern in the spin structure factor.}, subject = {Heisenberg-Modell}, language = {en} } @phdthesis{Burd2022, author = {Burd, Paul Ray}, title = {Multiwavelength Probes of Physical Conditions in the Blazar Zone of AGN jets}, doi = {10.25972/OPUS-29700}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297001}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Context. In active galaxies, matter is accreted onto super massive black holes (SMBH). This accretion process causes a region roughly the size of our solar system to outshine the entire host galaxy, forming an active galactic nucleus (AGN). In some of these active galaxies, highly relativistic particle jets are formed parallel to the rotation axis of the super massive black hole. A fraction of these sources is observed under a small inclination angle between the pointing direction of the jet and the observing line of sight. These sources are called blazars. Due to the small inclination angle and the highly relativistic speeds of the particles in the jet, beaming effects occur in the radiation of these particles. Blazars can be subdivided into the high luminosity flat spectrum radio quasars (FSRQs) and the low luminosity BL Lacertae objects (BL Lacs). As all AGN, blazars are broadband emitters and therefore observable from the longest wavelengths in the radio regime to the shortest wavelengths in the gamma-ray regime. In this thesis I will analyze blazars at these two extremes with respect to their parsec-scale properties in the radio and their time evolution properties in gamma-ray flux. Method. In the radio regime the technique of very long baseline interferometry (VLBI) can be used in order to spatially resolve the synchrotron radiation coming from those objects down to sub-parsec scales. This information can be used to observe the time evolution of the structure of such sources. This is done in large monitoring programs such as the MOJAVE (15 GHz) and the Boston University blazar monitoring program (43 GHz). In this thesis I utilize data of 28 sources from these monitoring programs spanning 10 years of observation from 2003 to 2013, resulting in over 1800 observed epochs, to study the brightness temperature and diameter gradients of these jets. I conduct a search for systematic geometry transitions in the radio jets. The synchrotron cooling time in the radio core of the jets is used to determine the magnetic field strength in the radio core. Considering the jet geometry, these magnetic field strengths are scaled to the ergosphere of the SMBH in order to obtain the distance of the radio core to the SMBH. In the gamma-regime these blazars cannot be spatially resolved. Due to this, it is hard to put strong constrains onto where the gamma-ray emitting region is. Blazars have shown to be variable at high energies on time scales down to minutes. The nature of this variability can be studied in order to put constrains on the particle acceleration mechanism and possibly the region and size of the gamma-ray emitting region. The variability of blazars in the energy range between 0.1 GeV and 1 GeV can for example be observed with the pair-conversion telescope on board the Fermi satellite. I use 10 years of data from the Fermi-LAT (LAT: Large Area Telescope) satellite in order to study the variability of a large sample of blazars (300-800, depending on the used significance filters for data points). I quantify this variability with the Ornstein-Uhlenbeck (OU) parameters and the power spectral density (PSD) slopes. The same procedure is applied to 20 light curves available for the radio sample. Results. The diameter evolution along the jet axis of the radio sources suggests, that FSRQs feature flatter gradients than BL Lacs. Fitting these gradients, it is revealed that BL Lacs are systematically better described by a simple single power law than FSRQs. I found 9 sources with a strongly constrained geometry transition. The sources are 0219+421, 0336-019, 0415+379, 0528+134, 0836+710, 1101+384, 1156+295, 1253-055 and 2200+420. In all of these sources, the geometry transition regions are further out in the jet than the Bondi sphere. The magnetic field strengths of BL Lacs is systematically larger than that of FSRQs. However the scaling of these fields suggest that the radio cores of BL Lac objects are closer to the SMBHs than the radio cores of FSRQs. Analyzing the variability of Fermi-LAT light curves yields consistent results for all samples. FSRQs show systematically steeper PSD slopes and feature OU parameters more favorable to strong variability than BL Lacs. The Fermi-LAT light curves of the sub-sample of radio jets, suggest an anticorrelation between the jet complexity from the radio observations and the OU-parameters as well as the PSD slopes from the gamma-ray observations. Conclusion. The flatter diameter gradients of FSRQs suggest that these sources are more collimated further down the jet than BL Lacs. The systematically better description of the diameter and brightness temperature gradient by a single power law of BL Lacs, suggest that FSRQs are more complex with respect to the diameter evolution along the jet and the surface brightness distribution than BL Lac objects. FSRQs often feature regions where recollimation can occur in distinct knots within the jets. For the sources where a geometry transition could be constrained, the Bondi radius, being systematically smaller than the position of the transition region along the jet axis, suggest that changing pressure gradients are not the sole cause for these systematic geometry transitions. Nevertheless they may be responsible for recollimation regions, found typically downstream the jet, beyond the Bondi radius and the transition zone. The difference in the distance of the radio cores between FSRQs and BL Lacs is most likely due to the combination of differences in SMBH masses and systematically smaller jet powers in BL Lacs. The variability in energy ranges above 100 MeV and above 1 GeV-regime suggest that many light curves of BL Lac objects are more likely to be white noise while the PSD slopes and the OU parameters of FSRQ gamma-ray light curves favor stronger variability on larger time scales with respect to the time binning of the analyzed light curve. Although the anticorrelation of the jet complexity acquired from the radio observations and the PSD slopes and OU parameters from the gamma-observations suggest that more complex sources favor OU parameters and PSD slopes resulting in more variability (not white noise) it is beyond the scope of this thesis to pinpoint whether this correlation results from causation. The question whether a complex jet causes more gamma-ray variability or more gamma-ray variability causes more complex jets cannot be answered at this point. Nevertheless the computed correlation measures suggest that this dependence is most likely not linear and therefore an indication that these effects might even interact.}, language = {en} } @phdthesis{Wendel2022, author = {Wendel, Christoph}, title = {Spectral Imprints from Electromagnetic Cascades in Blazar Jets}, doi = {10.25972/OPUS-29007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290076}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The extragalactic gamma-ray sky is dominated by blazars, active galactic nuclei (AGN) with a relativistic jet that is closely aligned with the line of sight. Galaxies develop an active nucleus if the central supermassive black hole (BH) accretes large amounts of ambient matter and magnetic flux. The inflowing mass accumulates around the plane perpendicular to the accretion flow's angular momentum. The flow is heated through viscous friction and part of the released energy is radiated as blackbody or non-thermal radiation, with luminosities that can dominate the accumulated stellar luminosity of the host galaxy. A fraction of the accretion flow luminosity is reprocessed in a surrounding field of ionised gas clouds. These clouds, revolving around the central BH, emit Doppler-broadened atomic emission lines. The region where these broad-line-emitting clouds are located is called broad-line region (BLR). About one in ten AGN forms an outflow of radiation and relativistic particles, called a relativistic jet. According to the Blandford-Znajek mechanism, this is facilitated through electromagnetic processes in the magnetosphere of a spinning BH. The latter induces a magnetospheric poloidal current circuit, generating a decelerating torque on the BH and inducing a toroidal magnetic field. Consequently, rotational energy of the BH is converted to Poynting flux streaming away mainly along the rotational axis and starting the jet. One possibility for particle acceleration near the jet base is realised by magnetospheric vacuum gaps, regions temporarily devoid of plasma, such that an intermittent electric field arises parallel to the magnetic field lines, enabling particle acceleration and contributing to the mass loading of the jets. Magnetised structures, containing bunches of relativistic electrons, propagate away from the galactic nucleus along the jets. Assuming that these electrons emit synchrotron radiation and that they inverse-Compton (IC) up-scatter abundant target photons, which can either be the synchrotron photons themselves or photons from external emitters, the emitted spectrum can be theoretically determined. Additionally taking into account that these emission regions move relativistically themselves and that the emission is Doppler-boosted and beamed in forward direction, the typical two-hump spectral energy distribution (SED) of blazars is recovered. There are however findings that challenge this well-established model. Short-time variability, reaching down to minute scales at very high energy gamma rays, is today known to be a widespread phenomenon of blazars, calling for very compact emission regions. In most models of such optically thick emission regions, the gamma-ray flux is usually pair-absorbed exponentially, without considering the cascade evolving from the pair-produced electrons. From the observed flux, it is often concluded that emission emanates from larger distances where the region is optically thin, especially from outside of the BLR. Only in few blazars gamma-ray attenuation associated with pair absorption in the BLR was clearly reported. With the advent of sophisticated high-energy or very high energy gamma-ray detectors, like the Fermi Large Area Telescope or the Major Atmospheric Gamma-ray Imaging Cherenkov telescopes, besides the extraordinarily fast variability spectral features have been found that cannot be explained by conventional models reproducing the two-hump SED. Two such narrow spectral features are discussed in this work. For the nearby blazar Markarian 501, hints to a sharp peak around 3 TeV have been reported from a multi-wavelength campaign carried out in July 2014, while for 3C 279 a spectral dip was found in 2018 data, that can hardly be described with conventional fitting functions. In this work it is examined whether these spectral peculiarities of blazar jet emission can be explained, if the full radiation reprocessing through an IC pair cascade is accounted for. Such a cascade is the multiple concatenation of IC scattering events and pair production events. In the cascades generally considered in this work, relativistic electrons and high-energy photons are injected into a fixed soft target photon field. A mathematical description for linear IC pair cascades with escape terms is delivered on the basis of preliminary works. The steady-state kinetic equations for the electrons and for the photons are determined, whereby it is paid attention to an explicit formulation and to motivating the correct integration borders of all integrals from kinematic constraints. In determining the potentially observable gamma-ray flux, both the attenuated injected flux and the flux evolving as an effect of IC up-scattering, pair absorption and escape are incorporated, giving the emerging spectra very distinct imprints. Much effort is dedicated to the numerical solution of the electrons' kinetic equation via iterative schemes. It is explained why pointwise iteration from higher to lower Lorentz factors is more efficient than iterating the whole set of sampling points. The algorithm is parallelised at two positions. First, several workers can perform pointwise iterations simultaneously. Second, the most demanding integral is cut into a number of part integrals which can be determined by multiple workers. Through these measures, the Python code can be readily applied to simulate steady-state IC pair cascades with escape. In the case of Markarian 501 the developed framework is as follows. The AGN hosts an advection-dominated accretion flow with a normalised accretion rate of several \(10^{-4}\) and an electron temperature near \(10^{10}\) K. On the one hand, the accretion flow illuminates the few ambient gas clouds with approximate radius \(10^{11}\) m, which reprocess a fraction 0.01 of the luminosity into hydrogen and helium emission lines. On the other hand, the gamma rays from the accretion flow create electrons and positrons in a sporadically active vacuum gap in the BH magnetosphere. In the active gap, a power of roughly 0.001 of the Blandford-Znajek power is extracted from the rotating BH through a gap potential drop of several \(10^{18}\) V, generating ultra-relativistic electrons, which subsequently are multiplied by a factor of about \(10^6\) through interaction with the accretion flow photons. This electron beam propagates away from the central engine and encounters the photon field of one passing ionised cloud. The resulting IC pair cascade is simulated and the evolving gamma-ray spectrum is determined. Just above the absorption troughs due to the hydrogen lines, the spectrum exhibits a narrow bump around 3 TeV. When the cascaded emission is added to the emission generated at larger distances, the observed multi-wavelength SED including the sharp peak at 3 TeV is reproduced, underlining that radiation processes beyond conventional models are motivated by distinct spectral features. The dip in the spectrum of 3C 279 is addressed by a similar cascade model. Three types of injection are considered, varying in the ratio of the photon density to the electron density and varying in the spectral shape. The IC pair cascade is assumed to happen either in the dense BLR photon field with a luminosity of several \(10^{37}\) W and a radial size of few \(10^{14}\) m or in the diluted photon field outside of the BLR. The latter scenario is however rejected as the spectral slope around several 100 MeV and the dip at few 10 GeV cannot be reconciled within this model. The radiation cascaded in the BLR can explain the observational data, irrespective of the assumed injected rate. It is therefore concluded that for this period of gamma-ray emission, the radiation production happens at the edge of the BLR of 3C 279. Both investigations show that IC pair cascades can account for fine structure seen in blazar SEDs. It is insufficient to restrict the radiation transport to pure exponential absorption of an injection term. Pair production and IC up-scattering by all generations of photons and electrons in the optically thick regime critically shape the emerging spectra. As the advent of future improved detectors will provide more high-precision spectra, further observations of narrow spectral features can be expected. It seems therefore recommendable to incorporate cascading into conventional radiation production models or to extend the model developed in this work by synchrotron radiation.}, subject = {Active galactic nucleus}, language = {en} } @phdthesis{Langejahn2022, author = {Langejahn, Marcus}, title = {Hard X-ray Properties of Relativistically Beamed Jets from Radio- and Gamma-Ray-Bright Blazars}, doi = {10.25972/OPUS-28200}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282009}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this work I characterize the hard X-ray properties of blazars, active galactic nuclei with highly beamed emission, which are notoriously hard to detect in this energy range. I employ pre-defined samples of beamed AGN: the radio-selected MOJAVE and TANAMI samples, as well as the most recent gamma-ray-selected Fermi/LAT 4LAC catalog. The hard X-ray data is extracted from the 105-month all-sky survey maps of the Swift/BAT (Burst Alert Telescope) in the energy band of 20 keV to 100 keV. A great majority of both the MOJAVE and TANAMI samples are significantly detected, with signal-to noise ratios of the sources often just below the X-ray catalog signal thresholds. All blazar sub-types (FSRQs, BL Lacs) and radio galaxies show characteristic ranges of X-ray flux, luminosity, and photon index. Their properties are correlated with the corresponding SED's shape / peak frequency. The LogN-LogS distributions of the samples show a scarcity of blazars in the middle and lower X-ray flux range, indicating differing evolutionary paths between radio and X-ray emission, which is also suggested by the corresponding luminosity functions. Compared to the radio samples, the 4LAC sources are on average significantly less bright in the BAT band since this range often coincides with the spectral gap region between the two big SED emission bumps. Also, the spectral shapes differ notably, especially for the sub-type of BL Lacs. Using the parameter space of X-ray and gamma-ray photon indices, 35 blazar candidate sources can be assigned to either the FSRQ or BL Lac type with high certainty. The reason why many blazars are weak in this energy band can be traced back to a number of factors: the selection bias of the initial sample, differential evolution of the X-rays and the wavelengths in which the sample is defined, and the limited sensitivity of the observing instruments.}, subject = {Aktiver galaktischer Kern}, language = {en} } @phdthesis{Gerbershagen2022, author = {Gerbershagen, Marius}, title = {Quantum information and the emergence of spacetime in the AdS/CFT correspondence}, doi = {10.25972/OPUS-28199}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281997}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {This thesis studies connections between quantum information measures and geometric features of spacetimes within the AdS/CFT correspondence. These studies are motivated by the idea that spacetime can be thought of as an effect emerging from an underlying entanglement structure in the AdS/CFT correspondence. In particular, I study generalized entanglement measures in two-dimensional conformal field theories and their holographic duals. Unlike the ordinary entanglement entropy of a spatial subregion typically used in the AdS/CFT context, the generalization considered here measures correlations between different fields as well as between spatial degrees of freedom. I present a new gauge invariant definition of the generalized entanglement entropy applicable to both mixed and pure states as well as explicit results for thermal states of the S_N-orbifold theory of the D1/D5 system. Along the way, I develop computation techniques for conformal blocks on the torus and apply them to the calculation of the ordinary entanglement entropy for large central charge CFTs at finite size and finite temperature. The generalized Ryu-Takayanagi formula arising from these studies provides further support for the idea that entanglement and geometry are intrinsically linked in AdS/CFT. The results show that the holographic dual to the generalized entanglement entropy given by the length of a geodesic winding around black hole horizons or naked singularities probes subregions of spacetime that are inaccessible to Ryu-Takayanagi surfaces, thereby solving the puzzle of how these features of the spacetime are encoded in the boundary theory. Furthermore, I investigate quantum circuits embedded in two-dimensional conformal field theories as well as computational complexity measures therein. These investigations are motivated by conjectures relating computational complexity in conformal field theories to geometric features of black hole geometries. In this thesis, I study quantum circuits built up from conformal transformations. I investigate examples of computational complexity measures in these circuits related to geometric actions on coadjoint orbits of the Virasoro group and to the Fubini-Study metric. I then work out relations between these computational complexity measures and the dual gravitational theory. Moreover, I construct a bulk dual to the circuits in consideration and use this construction to study geometric realizations of computational complexity measures from first principles. The results of this part on the one hand rule out some possibilities for dual realizations of computational complexity in two-dimensional CFTs put forward in previous work while on the other hand providing a new robust dual realization of a computational complexity measure based on the Fubini-Study distance.}, subject = {AdS-CFT-Korrespondenz}, language = {en} } @phdthesis{Riegler2022, author = {Riegler, David}, title = {Emergent phenomena in strongly correlated electron systems: Auxiliary particle approach to the many-body problem}, doi = {10.25972/OPUS-27473}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274737}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Emergent phenomena in condensed matter physics like, e.g., magnetism, superconductivity, or non-trivial topology often come along with a surprise and exert great fascination to researchers up to this day. Within this thesis, we are concerned with the analysis of associated types of order that arise due to strong electronic interactions and focus on the high-\(T_c\) cuprates and Kondo systems as two prime candidates. The underlying many-body problem cannot be solved analytically and has given rise to the development of various approximation techniques to tackle the problem. In concrete terms, we apply the auxiliary particle approach to investigate tight-binding Hamiltonians subject to a Hubbard interaction term to account for the screened Coulomb repulsion. Thereby, we adopt the so-called Kotliar-Ruckenstein slave-boson representation that reduces the problem to non-interacting quasiparticles within a mean-field approximation. Part I provides a pedagogical review of the theory and generalizes the established formalism to encompass Gaussian fluctuations around magnetic ground states as a crucial step to obtaining novel results. Part II addresses the two-dimensional one-band Hubbard model, which is known to approximately describe the physics of the high-\(T_c\) cuprates that feature high-temperature superconductivity and various other exotic quantum phases that are not yet fully understood. First, we provide a comprehensive slave-boson analysis of the model, including the discussion of incommensurate magnetic phases, collective modes, and a comparison to other theoretical methods that shows that our results can be massively improved through the newly implemented fluctuation corrections. Afterward, we focus on the underdoped regime and find an intertwining of spin and charge order signaled by divergences of the static charge susceptibility within the antiferromagnetic domain. There is experimental evidence for such inhomogeneous phases in various cuprate materials, which has recently aroused interest because such correlations are believed to impact the formation of Cooper pairs. Our analysis identifies two distinct charge-ordering vectors, one of which can be attributed to a Fermi-surface nesting effect and quantitatively fits experimental data in \(\mathrm{Nd}_{2-\mathrm{x}}\mathrm{Ce}_\mathrm{x}\mathrm{CuO}_4\) (NCCO), an electron-doped cuprate compound. The other resembles the so-called Yamada relation implying the formation of periodic, double-occupied domain walls with a crossover to phase separation for small dopings. Part III investigates Kondo systems by analyzing the periodic Anderson model and its generalizations. First, we consider Kondo metals and detect weakly magnetized ferromagnetic order in qualitative agreement with experimental observations, which hinders the formation of heavy fermions. Nevertheless, we suggest two different parameter regimes that could host a possible Kondo regime in the context of one or two conduction bands. The part is concluded with the study of topological order in Kondo insulators based on a three-dimensional model with centrosymmetric spin-orbit coupling. Thereby, we classify topologically distinct phases through appropriate \(\mathbb{Z}_2\) invariants and consider paramagnetic and antiferromagnetic mean-field ground states. Our model parameters are chosen to specifically describe samarium hexaboride (\(\mbox{SmB}_6\)), which is widely believed to be a topological Kondo insulator, and we identify topologically protected surface states in agreement with experimental evidence in that material. Moreover, our theory predicts the emergence of an antiferromagnetic topological insulator featuring one-dimensional hinge-states as the signature of higher-order topology in the strong coupling regime. While the nature of the true ground state is still under debate, corresponding long-range magnetic order has been observed in pressurized or alloyed \(\mbox{SmB}_6\), and recent experimental findings point towards non-trivial topology under these circumstances. The ability to understand and control topological systems brings forth promising applications in the context of spintronics and quantum computing.}, subject = {Elektronenkorrelation}, language = {en} } @phdthesis{Fries2022, author = {Fries, Pascal}, title = {On the r{\^o}le of entanglement in quantum field theory}, doi = {10.25972/OPUS-25846}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258465}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this thesis, I study entanglement in quantum field theory, using methods from operator algebra theory. More precisely, the thesis covers original research on the entanglement properties of the free fermionic field. After giving a pedagogical introduction to algebraic methods in quantum field theory, as well as the modular theory of Tomita-Takesaki and its relation to entanglement, I present a coherent framework that allows to solve Tomita-Takesaki theory for free fermionic fields in any number of dimensions. Subsequently, I use the derived machinery on the free massless fermion in two dimensions, where the formulae can be evaluated analytically. In particular, this entails the derivation of the resolvent of restrictions of the propagator, by means of solving singular integral equations. In this way, I derive the modular flow, modular Hamiltonian, modular correlation function, R\'enyi entanglement entropy, von-Neumann entanglement entropy, relative entanglement entropy, and mutual information for multi-component regions. All of this is done for the vacuum and thermal states, both on the infinite line and the circle with (anti-)periodic boundary conditions. Some of these results confirm previous results from the literature, such as the modular Hamiltonian and entanglement entropy in the vacuum state. The non-universal solutions for modular flow, modular correlation function, and R\'enyi entropy, however are new, in particular at finite temperature on the circle. Additionally, I show how boundaries of spacetime affect entanglement, as well as how one can define relative (entanglement) entropy and mutual information in theories with superselection rules. The findings regarding modular flow in multi-component regions can be summarised as follows: In the non-degenerate vacuum state, modular flow is multi-local, in the sense that it mixes the field operators along multiple trajectories, with one trajectory per component. This was already known from previous literature but is presented here in a more explicit form. In particular, I present the exact solution for the dynamics of the mixing process. What was not previously known at all, is that the modular flow of the thermal state on the circle is infinitely multi-local even for a connected region, in the sense that it mixes the field along an infinite, discretely distributed set, of trajectories. In the limit of high temperatures, all trajectories but the local one are pushed towards the boundary of the region, where their amplitude is damped exponentially, leaving only the local result. At low temperatures, on the other hand, these trajectories distribute densely in the region to either---for anti-periodic boundary conditions---cancel, or---for periodic boundary conditions---recover the non-local contribution due to the degenerate vacuum state. Proceeding to spacetimes with boundaries, I show explicitly how the presence of a boundary implies entanglement between the two components of the Dirac spinor. By computing the mutual information between the components inside a connected region, I show quantitatively that this entanglement decreases as an inverse square law at large distances from the boundary. In addition, full conformal symmetry (which is explicitly broken due to the presence of a boundary) is recovered from the exact solution for modular flow, far away from the boundary. As far as I know, all of these results are new, although related results were published by another group during the final stage of this thesis. Finally, regarding relative entanglement entropy in theories with superselection sectors, I introduce charge and flux resolved relative entropies, which are novel measures for the distinguishability of states, incorporating a charge operator, central to the algebra of observables. While charge resolved relative entropy has the interpretation of being a ``distinguishability per charge sector'', I argue that it is physically meaningless without placing a cutoff, due to infinite short-distance entanglement. Flux resolved relative entropy, on the other hand, overcomes this problem by inserting an Aharonov-Bohm flux and thus passing to a variant of the grand canonical ensemble. It takes a well defined value, even without putting a cutoff, and I compute its value between various states of the free massless fermion on the line, the charge operator being the total fermion number.}, subject = {Quanteninformation}, language = {en} } @phdthesis{Hausoel2022, author = {Hausoel, Andreas}, title = {Electronic magnetism in correlated systems: from quantum materials down to Earth's core}, doi = {10.25972/OPUS-25444}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-254444}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In the last decade continuous-time quantum Monte Carlo in the hybridization expansion (CTHYB) was one of the most successful Monte Carlo techniques to describe correlated quantum phenomena in conjunction with dynamical mean field theory (DMFT). The first part of the thesis consists of algorithmical developments regarding CTHYB and DMFT. I provide a complete derivation and an extensive discussion of the expansion formula. We generalized it to treat spin-orbit coupling, and invented the superstate sampling algorithm to make it efficient enough for describing systems with general interactions, crystal fields and spin-orbit coupling at low temperatures. But CTHYB is known to fail in the standard implementation for equal-time correlators, certain higher-order Green's functions and the atomic limit; we discovered that its estimator for the Greens function is also inconsistent for Anderson impurities with finite, discrete baths. I focus then on further improvements of CTHYB that we have conceived and worked on, in particular for f-orbitals and for taking physical symmetries into account in the calculation of the Monte Carlo observables. The second part of the thesis presents selected physical applications of these methods. I show DMFT calculations of highest accuracy for elemental iron and nickel and discover a new mechanism of magnetic ordering in nickel: the ordering of band structure-induced local moments. Then we analyze the stability of this phenomenon under pressure and temperatures, that characterize in the Earth's core. We find, that the mechanism survives these conditions and may give a significant contribution to the generation of the Earth's magnetic field. The next topic is the stability of double Dirac fermions against electronic correlations. We find, that the Coulomb interaction in the corresponding material Bi2 CuO4 are strong enough to destroy the double Dirac cone, and substantial uniform pressure is necessary to restore them. In the last chapter I derive the properties of Higgs and Goldstone bosons from Ginzburg-Landau theory, and identify these excitations in a model of an excitonic magnet.}, subject = {Monte-Carlo-Simulation}, language = {en} } @phdthesis{Breunig2021, author = {Breunig, Daniel Manfred}, title = {Transport properties and proximity effect of topological hybrid structures}, doi = {10.25972/OPUS-25054}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250546}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Over the last two decades, accompanied by their prediction and ensuing realization, topological non-trivial materials like topological insulators, Dirac semimetals, and Weyl semimetals have been in the focus of mesoscopic condensed matter research. While hosting a plethora of intriguing physical phenomena all on their own, even more fascinating features emerge when superconducting order is included. Their intrinsically pronounced spin-orbit coupling leads to peculiar, time-reversal symmetry protected surface states, unconventional superconductivity, and even to the emergence of exotic bound states in appropriate setups. This Thesis explores various junctions built from - or incorporating - topological materials in contact with superconducting order, placing particular emphasis on the transport properties and the proximity effect. We begin with the analysis of Josephson junctions where planar samples of mercury telluride are sandwiched between conventional superconducting contacts. The surprising observation of pronounced excess currents in experiments, which can be well described by the Blonder-Tinkham-Klapwijk theory, has long been an ambiguous issue in this field, since the necessary presumptions are seemingly not met. We propose a resolution to this predicament by demonstrating that the interface properties in hybrid nanostructures of distinctly different materials yet corroborate these assumptions and explain the outcome. An experimental realization is feasible by gating the contacts. We then proceed with NSN junctions based on time-reversal symmetry broken Weyl semimetals and including superconducting order. Due to the anisotropy of the electron band structure, both the transport properties as well as the proximity effect depend substantially on the orientation of the interfaces between the materials. Moreover, an imbalance can be induced in the electron population between Weyl nodes of opposite chirality, resulting in a non-vanishing spin polarization of the Cooper pairs leaking into the normal contacts. We show that such a system features a tunable dipole character with possible applications in spintronics. Finally, we consider partially superconducting surface states of three-dimensional topological insulators. Tuning such a system into the so-called bipolar setup, this results in the formation of equal-spin Cooper pairs inside the superconductor, while simultaneously acting as a filter for non-local singlet pairing. The creation and manipulation of these spin-polarized Cooper pairs can be achieved by mere electronic switching processes and in the absence of any magnetic order, rendering such a nanostructure an interesting system for superconducting spintronics. The inherent spin-orbit coupling of the surface state is crucial for this observation, as is the bipolar setup which strongly promotes non-local Andreev processes.}, subject = {Supraleitung}, language = {en} } @phdthesis{Klett2021, author = {Klett, Michael}, title = {Auxiliary particle approach for strongly correlated electrons : How interaction shapes order}, doi = {10.25972/OPUS-24812}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248121}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Since the genesis of condensed matter physics, strongly correlated fermionic systems have shown a variety of fascinating properties and remain a vital topic in the field. Such systems arise through electronic interaction, and despite decades of intensive research, no holistic approach to solving this problem has been found. During that time, physicists have compiled a wealth of individual experimental and theoretical results, which together give an invaluable insight into these materials, and, in some instances, can explain correlated phenomena. However, there are several systems that stubbornly refuse to fall completely in line with current theoretical descriptions, among them the high-\( T_c{}\) cuprates and heavy fermion compounds. Although the two material classes have been around for the better part of the last 50 years, large portions of their respective phase diagram are still under intensive debate. Recent experiments in several electron-doped cuprates compounds, e.g. neodymium cerium copper oxide (Nd\(_{2x}\)Ce\(_x\)CuO\(_4\)), reveal a charge ordering about an antiferromagnetic ground state. So far, it has not been conclusively clarified how this intertwining of charge and spin polarization comes about and how it can be reconciled with a rigorous theoretical description. The heavy-fermion semimetals, on the other hand, have enjoyed renewed scientific interest with the discovery of topological Kondo insulators, a new material class offering a unique interface of topology, symmetry breaking, and correlated phenomena. In this context, samarium hexaboride (SmB\(_6\)) has emerged as a prototypical system, which may feature a topological ground state. In this thesis, we present a spin rotational invariant auxiliary particle approach to investigate the propensities of interacting electrons towards forming new states of order. In particular, we study the onset of spin and charge order in high-\( T_c{}\) cuprate systems and Kondo lattices, as well as the interplay of magnetism and topology. To that end, we use a sophisticated mean-field approximation of bosonic auxiliary particles augmented by a stability analysis of the saddle point via Gaussian fluctuations. The latter enables the derivation of dynamic susceptibilities, which describe the response of the system under external fields and offer a direct comparison to experiments. Both the mean-field and fluctuation formalisms require a numerical tool that is capable of extremizing the saddle point equations, on the one hand, and reliably solving a loop integral of the susceptibility-type, on the other. A full, from scratch derivation of the formalism tailored towards a software implementation, is provided and pedagogically reviewed. The auxiliary particle method allows for a rigorous description of incommensurate magnetic order and compares well to other established numerical and analytical techniques. Within our analysis, we employ the two-dimensional one-band Hubbard as well as the periodic Anderson model as minimal Hamiltonians for the high-\( T_c{}\) cuprates and Kondo systems, respectively. For the former, we observe a regime of intertwined charge- and spin-order in the electron-doped regime, which matches recent experimental observations in the cuprate material Nd\(_{2x}\)Ce\(_x\)CuO\(_4\). Furthermore, we localize the emergence of a Kondo regime in the periodic Anderson model and establish the magnetic phase diagram of the two-band model for topological Kondo insulators. The emerging antiferromagnetic ground state can be characterized by its topological properties and shows, for a non-trivial phase, topologically protected hinge modes.}, subject = {Festk{\"o}rpertheorie}, language = {en} } @phdthesis{Matthaiakakis2021, author = {Matthaiakakis, Ioannis}, title = {Hydrodynamics in Solid State Systems and the AdS/CFT correspondence}, doi = {10.25972/OPUS-24439}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-244390}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {We employ the AdS/CFT correspondence and hydrodynamics to analyze the transport properties of \(2+1\) dimensional electron fluids. In this way, we use theoretical methods from both condensed matter and high-energy physics to derive tangible predictions that are directly verifiable in experiment. The first research topic we consider is strongly-coupled electron fluids. Motivated by early results by Gurzhi on the transport properties of weakly coupled fluids, we consider whether similar properties are manifest in strongly coupled fluids. More specifically, we focus on the hydrodynamic tail of the Gurzhi effect: A decrease in fluid resistance with increasing temperature due to the formation of a Poiseuille flow of electrons in the sample. We show that the hydrodynamic tail of the Gurzhi effect is also realized in strongly coupled and fully relativistic fluids, but with modified quantitative features. Namely, strongly-coupled fluids always exhibit a smaller resistance than weakly coupled ones and are, thus, far more efficient conductors. We also suggest that the coupling dependence of the resistance can be used to measure the coupling strength of the fluid. In view of these measurements, we provide analytical results for the resistance as a function of the shear viscosity over entropy density \(\eta/s\) of the fluid. \(\eta/s\) is itself a known function of the coupling strength in the weak and infinite coupling limits. In further analysis for strongly-coupled fluids, we propose a novel strongly coupled Dirac material based on a kagome lattice, Scandium-substituted Herbertsmithite (ScHb). The large coupling strength of this material, as well as its Dirac nature, provides us with theoretical and experimental access to non-perturbative relativistic and quantum critical physics. A highly suitable method for analyzing such a material's transport properties is the AdS/CFT correspondence. Concretely, using AdS/CFT we derive an estimate for ScHb's \(\eta/s\) and show that it takes a value much smaller than that observed in weakly coupled materials. In turn, the smallness of \(\eta/s\) implies that ScHb's Reynolds number, \(Re\), is large. In fact, \(Re\) is large enough for turbulence, the most prevalent feature of fluids in nature, to make its appearance for the first time in electronic fluids. Switching gears, we proceed to the second research topic considered in this thesis: Weakly coupled parity-breaking electron fluids. More precisely, we analyze the quantitative and qualitative changes to the classical Hall effect, for electrons propagating hydrodynamically in a lead. Apart from the Lorentz force, a parity-breaking fluid's motion is also impacted by the Hall-viscous force; the shear-stress force induced by the Hall-viscosity. We show that the interplay of these two forces leads to a hydrodynamic Hall voltage with non-linear dependence on the magnetic field. More importantly, the Lorentz and Hall-viscous forces become equal at a non-vanishing magnetic field, leading to a trivial hydrodynamic Hall voltage. Moreover, for small magnetic fields we provide analytic results for the dependence of the hydrodynamic Hall voltage on all experimentally-tuned parameters of our simulations, such as temperature and density. These dependences, along with the zero of the hydrodynamic Hall voltage, are distinct features of hydrodynamic transport and can be used to verify our predictions in experiments. Last but not least, we consider how a distinctly electronic property, spin, can be included into the hydrodynamic framework. In particular, we construct an effective action for non-dissipative spin hydrodynamics up to first order in a suitably defined derivative expansion. We also show that interesting spin-transport effects appear at second order in the derivative expansion. Namely, we show that the fluid's rotation polarizes its spin. This is the hydrodynamic manifestation of the Barnett effect and provides us with an example of hydrodynamic spintronics. To conclude this thesis, we discuss several possible extensions of our research, as well as proposals for research in related directions.}, subject = {Hydrodynamics}, language = {en} } @phdthesis{Tutschku2021, author = {Tutschku, Christian Klaus}, title = {Anomaly Induced Transport And Hall Viscous Effects In 2+1 Space-Time Dimensions}, doi = {10.25972/OPUS-23913}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239131}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The main goal of this thesis is to elucidate the sense in which recent experimental progress in condensed matter physics, namely the verification of two-dimensional Dirac-like materials and their control in ballistic- as well as hydrodynamic transport experiments enables the observation of a well-known 'high-energy' phenomenon: The parity anomaly of planar quantum electrodynamics (QED\(_{2+1}\)). In a nutshell, the low-energy physics of two-dimensional Quantum Anomalous Hall (QAH) insulators like (Hg,Mn)Te quantum wells or magnetically doped (Bi,Sb)Te thin films can be described by the combined response of two 2+1 space-time dimensional Chern insulators with a linear dispersion in momentum. Due to their Dirac-like spectra, each of those Chern insulators is directly related to the parity anomaly of planar quantum electrodynamics. However, in contrast to a pure QED\(_{2+1}\) system, the Lagrangian of each Chern insulator is described by two different mass terms: A conventional momentum-independent Dirac mass \(m\), as well as a momentum-dependent so-called Newtonian mass term \(B \vert \mathbf{k} \vert^2\). According to the parity anomaly it is not possible to well-define a parity- and U(1) gauge invariant quantum system in 2+1 space-time dimensions. More precisely, starting with a parity symmetric theory at the classical level, insisting on gauge-invariance at the quantum level necessarily induces parity-odd terms in the calculation of the quantum effective action. The role of the Dirac mass term in the calculation of the effective QED\(_{2+1}\) action has been initially studied in Phys. Rev. Lett. 51, 2077 (1983). Even in the presence of a Dirac mass, the associated fermion determinant diverges and lacks gauge invariance. This requires a proper regularization/renormalizaiton scheme and, as such, transfers the peculiarities of the parity anomaly to the massive case. In the scope of this thesis, we connect the momentum-dependent Newtonian mass term of a Chern insulator to the parity anomaly. In particular, we reveal, that in the calculation of the effective action, before renormalization, the Newtonian mass term acts similarly to a parity-breaking element of a high-energy regularization scheme. This calculation allows us to derive the finite frequency correction to the DC Hall conductivity of a QAH insulator. We derive that the leading order AC correction contains a term proportional to the Chern number. This term originates from the Newtonian mass and can be measured via electrical or via magneto-optical experiments. The Newtonian mass, in particular, significantly changes the resonance structure of the AC Hall conductivity in comparison to pure Dirac systems like graphene. In addition, we study the effective action of the aforementioned Chern insulators in external out-of-plane magnetic fields. We show that as a consequence of the parity anomaly the QAH phase in (Hg,Mn)Te quantum wells or in magnetically doped (Bi,Sb)Te thin films survives in out-of-plane magnetic fields, violates the Onsager relation, and can therefore be distinguished from a conventional quantum Hall (QH) response. As a smoking-gun of the QAH phase in increasing magnetic fields, we predict a transition from a quantized Hall plateau with \(\sigma_\mathrm{xy}= -\mathrm{e}^2/\mathrm{h}\) to a not perfectly quantized plateau which is caused by scattering processes between counter-propagating QH and QAH edge states. This transition is expected to be of significant relevance in paramagnetic QAH insulators like (Hg,Mn)Te/CdTe quantum wells, in which the exchange interaction competes against the out-of-plane magnetic field. All of the aforementioned results do not incorporate finite temperature effects. In order to shed light on such phenomena, we further analyze the finite temperature Hall response of 2+1 dimensional Chern insulators under the combined influence of a chemical potential and an out-of-plane magnetic field. As we have mentioned above, this non-dissipative transport coefficient is directly related to the parity anomaly of planar quantum electrodynamics. Within the scope of our analysis we show that the parity anomaly itself is not renormalized by finite temperature effects. However, the parity anomaly induces two terms of different physical origin in the effective Chern-Simons action of a QAH insulator, which are directly proportional to its Hall conductivity. The first term is temperature and chemical potential independent and solely encodes the intrinsic topological response. The second term specifies the non-topological thermal response of conduction- and valence band modes, respectively. We show that the relativistic mass \(m\) of a Chern insulator counteracts finite temperature effects, whereas its non-relativistic Newtonian mass \(B \vert \mathbf{k} \vert^2 \) enhances these corrections. In addition, we are extending our associated analysis to finite out-of-plane magnetic fields, and relate the thermal response of a Chern insulator therein to the spectral asymmetry, which is a measure of the parity anomaly in out-of-plane magnetic fields. In the second part of this thesis, we study the hydrodynamic properties of two-dimensional electron systems with a broken time-reversal and parity symmetry. Within this analysis we are mainly focusing on the non-dissipative transport features originating from a peculiar hydrodynamic transport coefficient: The Hall viscosity \(\eta_\mathrm{H}\). In out-of-plane magnetic fields, the Hall viscous force directly competes with the Lorentz force, as both mechanisms contribute to the overall Hall voltage. In our theoretical considerations, we present a way of uniquely distinguishing these two contributions in a two-dimensional channel geometry by calculating their functional dependencies on all external parameters. We are in particular deriving that the ratio of the Hall viscous contribution to the Lorentz force contribution is negative and that its absolute value decreases with an increasing width, slip-length and carrier density. Instead, it increases with the electron-electron mean free path in the channel geometry considered. We show that in typical materials such as GaAs the Hall viscous contribution can dominate the Lorentz signal up to a few tens of millitesla until the total Hall voltage vanishes and eventually is exceeded by the Lorentz contribution. Last but not least, we derive that the total Hall electric field has a parabolic form originating from Lorentz effects. Most remarkably, the offset of this parabola is directly characterized by the Hall viscosity. Therefore, in summary, our results pave the way to measure and to identify the Hall viscosity via both global and local measurements of the entire Hall voltage.}, subject = {Anomalie}, language = {en} } @phdthesis{Wang2021, author = {Wang, Zhenjiu}, title = {Numerical simulations of continuum field theories and exotic quantum phase transitions}, doi = {10.25972/OPUS-23800}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238001}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In this thesis, we investigate several topics pertaining to emergent collective quantum phenomena in the domain of correlated fermions, using the quantum Monte Carlo method. They display exotic low temperature phases as well as phase transitions which are beyond the Landau-Ginzburg theory. The interplay between three key points is crucial for us: fermion statistics, many body effects and topology. We highlight the following several achievements: 1. Successful modeling of continuum field theories with lattice Hamiltonians, 2. their sign-problem-free Monte Carlo simulations of these models, 3. and numerical results beyond mean field descriptions. First, we consider a model of Dirac fermions with a spin rotational invariant inter- action term that dynamically generates a quantum spin Hall insulator. Surprisingly, an s-wave superconducting phase emerges due to the condensation of topological de- fects of the spin Hall order parameter. When particle-hole symmetry is present, the phase transition between the topological insulator and the superconducting phase is an example of a deconfined quantum critical point(DQCP). Although its low energy effec- tive field theory is purely bosonic, the exact conservation law of the skyrmion number operator rules out the possibility of realizing this critical point in lattice boson models. This work is published in Ref. [1]. Second, we dope the dynamically generated quantum spin Hall insulator mentioned above. Hence it is described by a field theory without Lorentz invariance due to the lack of particle-hole symmetry. This sheds light on the extremely hot topic of twisted bilayergraphene: Why is superconductivity generated when the repulsive Coulomb interaction is much stronger than the electron-phonon coupling energy scale? In our case, Cooper pairs come from the topological skyrmion defects of the spin current order parameter, which are charged. Remarkably, the nature of the phase transition is highly non-mean-field-like: one is not allowed to simply view pairs of electrons as single bosons in a superfluid-Mott insulator transition, since the spin-current order parameter can not be ignored. Again, due to the aforementioned skyrmions, the two order parameters are intertwined: One phase transition occurs between the two symmetry breaking states. This work is summarized in Ref. [2]. Third, we investigate the 2 + 1 dimensional O(5) nonlinear sigma model with a topological Wess-Zumino-Witten term. Remarkably, we are able to perform Monte Carlo calculations with a UV cutoff given by the Dirac Landau level quantization. It is a successful example of simulating a continuous field theory without lattice regularization which leads to an additional symmetry breaking. The Dirac background and the five anti-commuting Dirac mass terms naturally introduce the picture of a non-trivial Berry phase contribution in the parameter space of the five component order parameter. Using the finite size scaling method given by the flux quantization, we find a stable critical phase in the low stiffness region of the sigma model. This is a candidate ground state of DQCP when the O(5) symmetry breaking terms are irrelevant at the critical point. Again, it has a bosonic low energy field theory which is seemingly unable to be realized in pure boson Hamiltonians. This work is summarized in Ref. [3].}, subject = {Quanten-Monte-Carlo-Methode}, language = {en} } @phdthesis{Schrauth2021, author = {Schrauth, Manuel}, title = {Critical Phenomena in Topologically Disordered Systems}, doi = {10.25972/OPUS-23499}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234998}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Clearly, in nature, but also in technological applications, complex systems built in an entirely ordered and regular fashion are the exception rather than the rule. In this thesis we explore how critical phenomena are influenced by quenched spatial randomness. Specifically, we consider physical systems undergoing a continuous phase transition in the presence of topological disorder, where the underlying structure, on which the system evolves, is given by a non-regular, discrete lattice. We therefore endeavour to achieve a thorough understanding of the interplay between collective dynamics and quenched randomness. According to the intriguing concept of universality, certain laws emerge from collectively behaving many-body systems at criticality, almost regardless of the precise microscopic realization of interactions in those systems. As a consequence, vastly different phenomena show striking similarities at their respective phase transitions. In this dissertation we pursue the question of whether the universal properties of critical phenomena are preserved when the system is subjected to topological perturbations. For this purpose, we perform numerical simulations of several prototypical systems of statistical physics which show a continuous phase transition. In particular, the equilibrium spin-1/2 Ising model and its generalizations represent -- among other applications -- fairly natural approaches to model magnetism in solids, whereas the non-equilibrium contact process serves as a toy model for percolation in porous media and epidemic spreading. Finally, the Manna sandpile model is strongly related to the concept of self-organized criticality, where a complex dynamic system reaches a critical state without fine-tuning of external variables. Our results reveal that the prevailing understanding of the influence of topological randomness on critical phenomena is insufficient. In particular, by considering very specific and newly developed lattice structures, we are able to show that -- contrary to the popular opinion -- spatial correlations in the number of interacting neighbours are not a key measure for predicting whether disorder ultimately alters the behaviour of a given critical system.}, subject = {Ising-Modell}, language = {en} } @phdthesis{Boettcher2021, author = {B{\"o}ttcher, Jan Frederic}, title = {Fate of Topological States of Matter in the Presence of External Magnetic Fields}, doi = {10.25972/OPUS-22045}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220451}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The quantum Hall (QH) effect, which can be induced in a two-dimensional (2D) electron gas by an external magnetic field, paved the way for topological concepts in condensed matter physics. While the QH effect can for that reason not exist without Landau levels, there is a plethora of topological phases of matter that can exist even in the absence of a magnetic field. For instance, the quantum spin Hall (QSH), the quantum anomalous Hall (QAH), and the three-dimensional (3D) topological insulator (TI) phase are insulating phases of matter that owe their nontrivial topology to an inverted band structure. The latter results from a strong spin-orbit interaction or, generally, from strong relativistic corrections. The main objective of this thesis is to explore the fate of these preexisting topological states of matter, when they are subjected to an external magnetic field, and analyze their connection to quantum anomalies. In particular, the realization of the parity anomaly in solid state systems is discussed. Furthermore, band structure engineering, i.e., changing the quantum well thickness, the strain, and the material composition, is employed to manipulate and investigate various topological properties of the prototype TI HgTe. Like the QH phase, the QAH phase exhibits unidirectionally propagating metallic edge channels. But in contrast to the QH phase, it can exist without Landau levels. As such, the QAH phase is a condensed matter analog of the parity anomaly. We demonstrate that this connection facilitates a distinction between QH and QAH states in the presence of a magnetic field. We debunk therefore the widespread belief that these two topological phases of matter cannot be distinguished, since they are both described by a \$\mathbb{Z}\$ topological invariant. To be more precise, we demonstrate that the QAH topology remains encoded in a peculiar topological quantity, the spectral asymmetry, which quantifies the differences in the number of states between the conduction and valence band. Deriving the effective action of QAH insulators in magnetic fields, we show that the spectral asymmetry is thereby linked to a unique Chern-Simons term which contains the information about the QAH edge states. As a consequence, we reveal that counterpropagating QH and QAH edge states can emerge when a QAH insulator is subjected to an external magnetic field. These helical-like states exhibit exotic properties which make it possible to disentangle QH and QAH phases. Our findings are of particular importance for paramagnetic TIs in which an external magnetic field is required to induce the QAH phase. A byproduct of the band inversion is the formation of additional extrema in the valence band dispersion at large momenta (the `camelback'). We develop a numerical implementation of the \$8 \times 8\$ Kane model to investigate signatures of the camelback in (Hg,Mn)Te quantum wells. Varying the quantum well thickness, as well as the Mn-concentration, we show that the class of topologically nontrivial quantum wells can be subdivided into direct gap and indirect gap TIs. In direct gap TIs, we show that, in the bulk \$p\$-regime, pinning of the chemical potential to the camelback can cause an onset to QH plateaus at exceptionally low magnetic fields (tens of mT). In contrast, in indirect gap TIs, the camelback prevents the observation of QH plateaus in the bulk \$p\$-regime up to large magnetic fields (a few tesla). These findings allowed us to attribute recent experimental observations in (Hg,Mn)Te quantum wells to the camelback. Although our discussion focuses on (Hg,Mn)Te, our model should likewise apply to other topological materials which exhibit a camelback feature in their valence band dispersion. Furthermore, we employ the numerical implementation of the \$8\times 8\$ Kane model to explore the crossover from a 2D QSH to a 3D TI phase in strained HgTe quantum wells. The latter exhibit 2D topological surface states at their interfaces which, as we demonstrate, are very sensitive to the local symmetry of the crystal lattice and electrostatic gating. We determine the classical cyclotron frequency of surface electrons and compare our findings with experiments on strained HgTe.}, subject = {Topologie}, language = {en} } @phdthesis{Lundt2020, author = {Lundt, Felix Janosch Peter}, title = {Superconducting Hybrids at the Quantum Spin Hall Edge}, doi = {10.25972/OPUS-21642}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216421}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {This Thesis explores hybrid structures on the basis of quantum spin Hall insulators, and in particular the interplay of their edge states and superconducting and magnetic order. Quantum spin Hall insulators are one example of topological condensed matter systems, where the topology of the bulk bands is the key for the understanding of their physical properties. A remarkable consequence is the appearance of states at the boundary of the system, a phenomenon coined bulk-boundary correspondence. In the case of the two-dimensional quantum spin Hall insulator, this is manifested by so-called helical edge states of counter-propagating electrons with opposite spins. They hold great promise, \emph{e.g.}, for applications in spintronics -- a paradigm for the transmission and manipulation of information based on spin instead of charge -- and as a basis for quantum computers. The beginning of the Thesis consists of an introduction to one-dimensional topological superconductors, which illustrates basic concepts and ideas. In particular, this includes the topological distinction of phases and the accompanying appearance of Majorana modes at their ends. Owing to their topological origin, Majorana modes potentially are essential building-blocks for topological quantum computation, since they can be exploited for protected operations on quantum bits. The helical edge states of quantum spin Hall insulators in conjunction with \$s\$-wave superconductivity and magnetism are a suitable candidate for the realization of a one-dimensional topological superconductor. Consequently, this Thesis investigates the conditions in which Majorana modes can appear. Typically, this happens between regions subjected to either only superconductivity, or to both superconductivity and magnetism. If more than one superconductor is present, the phase difference is of paramount importance, and can even be used to manipulate and move Majorana modes. Furthermore, the Thesis addresses the effects of the helical edge states on the anomalous correlation functions characterizing proximity-induced superconductivity. It is found that helicity and magnetism profoundly enrich their physical structure and lead to unconventional, exotic pairing amplitudes. Strikingly, the nonlocal correlation functions can be connected to the Majorana bound states within the system. Finally, a possible thermoelectric device on the basis of hybrid systems at the quantum spin Hall edge is discussed. It utilizes the peculiar properties of the proximity-induced superconductivity in order to create spin-polarized Cooper pairs from a temperature bias. Cooper pairs with finite net spin are the cornerstone of superconducting spintronics and offer tremendous potential for efficient information technologies.}, subject = {Mesoskopisches System}, language = {en} } @phdthesis{Saxena2020, author = {Saxena, Sheetal}, title = {Multiwavelength Studies Of Gamma-Ray Emitting Radio Galaxies}, doi = {10.25972/OPUS-21538}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215386}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Although the contribution to the Isotropic Gamma-Ray Background (IGRB) from unresolved extragalactic objects has been studied for many years, its exact composition and origin are as of yet unknown. It is suspected that diffuse processes such as dark matter annihilation contribute to the total IGRB, as well as unresolved gamma-ray emission from Active Galactic Nuclei (AGN), including radio galaxies. Radio galaxies are a source class that emit strongly at radio wavelengths, some of which have also been detected at gamma-ray wavelengths by the Fermi Large Area Telescope (Fermi-LAT), and by very high energy gamma-ray Cherenkov telescopes. It is thought that due to the orientation of their jets, radio galaxies are detected less numerously at gamma-ray energies than blazars. Furthermore, only a small number of radio galaxies have been detected at gamma-ray energies though it is considered that others do as well. It is for these reasons that gamma-ray emitting radio galaxies, an interesting and elusive class of objects, are selected for investigation in this work. In order to reach the goal of better understanding diffuse processes, it is necessary to model the radio galaxy spectral energy distributions (SEDs). As AGN emission is variable with respect to time, it is critical to use simultaneously collected observations. Calculation of the SED based on simultaneous, multiwavelength data across the electromagnetic spectrum produces a reasonably accurate representation of the state of an object in a given time range. The gamma-ray emitting radio galaxies M 87, NGC 1275, Pictor A, and Centaurus A are selected here based on having been detected in very high energy gamma-rays by Cherenkov telescopes, as well as in other wavelengths. A uniquely consistent analysis approach is applied, in which each radio galaxy is analyzed the same way using simultaneously collected data. This approach sets it apart from other studies. Fermi-LAT raw data for each source in the sample is analyzed in time ranges which directly overlap the very high energy gamma-ray Cherenkov observations, as well as several other wavelength ranges. A synchrotron self-Compton (SSC) model is applied, which provides accurate treatment of synchrotron and inverse-Compton processes occurring in the jets of AGN, while estimating physical characteristics of the source. It is found that the spectra of M 87, NGC 1275, Pictor A, and Centaurus A can be well described by the same SSC model, producing values for the physical characteristics such as the doppler factor and magnetic field, which are relatively consistent with each other. In order to characterize the diffuse emission from dark matter self-annihilation, the radio galaxy SEDs are also fit with a dark matter model, resulting in an estimated dark matter particle mass of around 4.7 TeV which lies within predicted ranges. The highly dense regions near the black holes of AGN provide the optimal conditions for detecting these signatures. It is also found here that discrepancies between the expected emission and the observed emission in the spectra of some radio galaxies can be explained using the combined SSC and dark matter model. As emission from dark matter annihilation is expected to remain steady with respect to time, a key feature of this work is the novelty of the combined SSC and dark matter model, and the finding that dark matter characteristics may be revealed through similar multiwavelength analyses during future low emission states of the AGN. The radio galaxy sample is then extended to include all gamma-ray emitting radio galaxies detected by the Fermi-LAT, and a calculation of the core radio, total radio, and gamma-ray luminosities is followed through. A future step in extending this work would be to estimate the gamma-ray luminosity function of radio galaxies and their percent contribution to the total IGRB, based on the widely agreed upon assumption that a reasonable estimate of the gamma-ray luminosity function of a population can be attained by appropriately scaling its radio luminosity function, as gamma-ray luminosities and radio luminosities are strongly linearly correlated. This work has also provided the basis for such a calculation by outlining the theory and initial steps. It is the hope that the vast scope of the gathered data, its simultaneity, and the use of consistent analysis methods across the sample, will provide an improved foundation for a future calculation of the contribution of this population to the IGRB, as well as encourage stricter requirements for multiwavelength studies.}, subject = {Active Galactic Nuclei}, language = {en} } @phdthesis{Fleckenstein2020, author = {Fleckenstein, Christoph Thomas}, title = {Conception and detection of exotic quantum matter in mesoscopic systems}, doi = {10.25972/OPUS-21284}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212847}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In this thesis we discuss the potential of nanodevices based on topological insulators. This novel class of matter is characterized by an insulating bulk with simultaneously conducting boundaries. To lowest order, the states that are evoking the conducting behavior in TIs are typically described by a Dirac theory. In the two-dimensional case, together with time- reversal symmetry, this implies a helical nature of respective states. Then, interesting physics appears when two such helical edge state pairs are brought close together in a two-dimensional topological insulator quantum constriction. This has several advantages. Inside the constriction, the system obeys essentially the same number of fermionic fields as a conventional quantum wire, however, it possesses more symmetries. Moreover, such a constriction can be naturally contacted by helical probes, which eventually allows spin- resolved transport measurements. We use these intriguing properties of such devices to predict the formation and detection of several profound physical effects. We demonstrate that narrow trenches in quantum spin Hall materials - a structure we coin anti-wire - are able to show a topological super- conducting phase, hosting isolated non-Abelian Majorana modes. They can be detected by means of a simple conductance experiment using a weak coupling to passing by helical edge states. The presence of Majorana modes implies the formation of unconventional odd-frequency superconductivity. Interestingly, however, we find that regardless of the presence or absence of Majoranas, related (superconducting) devices possess an uncon- ventional odd-frequency superconducting pairing component, which can be associated to a particular transport channel. Eventually, this enables us to prove the existence of odd- frequency pairing in superconducting quantum spin Hall quantum constrictions. The symmetries that are present in quantum spin Hall quantum constrictions play an essen- tial role for many physical effects. As distinguished from quantum wires, quantum spin Hall quantum constrictions additionally possess an inbuilt charge-conjugation symmetry. This can be used to form a non-equilibrium Floquet topological phase in the presence of a time-periodic electro-magnetic field. This non-equilibrium phase is accompanied by topological bound states that are detectable in transport characteristics of the system. Despite single-particle effects, symmetries are particularly important when electronic in- teractions are considered. As such, charge-conjugation symmetry implies the presence of a Dirac point, which in turn enables the formation of interaction induced gaps. Unlike single-particle gaps, interaction induced gaps can lead to large ground state manifolds. In combination with ordinary superconductivity, this eventually evokes exotic non-Abelian anyons beyond the Majorana. In the present case, these interactions gaps can even form in the weakly interacting regime (which is rather untypical), so that the coexistence with superconductivity is no longer contradictory. Eventually this leads to the simultaneous presence of a Z4 parafermion and a Majorana mode bound at interfaces between quantum constrictions and superconducting regions.}, subject = {Kondensierte Materie}, language = {en} } @phdthesis{Miekley2020, author = {Miekley, Nina}, title = {Complexity and Entanglement in the AdS/CFT Correspondence}, doi = {10.25972/OPUS-21226}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212265}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The AdS/CFT correspondence is an explicit realization of the holographic principle. It describes a field theory living on the boundary of a volume by a gravitational theory living in the interior and vice-versa. With its origins in string theory, the correspondence incorporates an explicit relationship between the degrees of freedom of both theories: the AdS/CFT dictionary. One astonishing aspect of the AdS/CFT correspondence is the emergence of geometry from field theory. On the gravity side, a natural way to probe the geometry is to study boundary-anchored extremal surfaces of different dimensionality. While there is no unified way to determine the field theory dual for such non-local quantities, the AdS/CFT dictionary contains entries for surfaces of certain dimensionality: it relates two-point functions to geodesics, the Wilson loop expectation value to two-dimensional surfaces and the entanglement entropy, i.e. a measure for entanglement between states in a region and in its complement, to co-dimension two surfaces in the bulk. In this dissertation, we calculate these observables for gravity setups dual to thermal states in the field theory. The geometric dual is given by AdS Schwarzschild black holes in general dimensions. We find analytic results for minimal areas in this setup. One focus of our analysis is the high-temperature limit. The leading and subleading term in this limit have diverse interpretation for the different observables. For example, the subleading term of the entanglement entropy satisfies a c-theorem for renormalization flows and gives insights into the number of effective degrees of freedom. The entanglement entropy emerged as the favorable way to probe the geometric dual. In addition to the extremal bulk surface, the holographic entanglement entropy associates a bulk region to the considered boundary region. The volume of this region is conjectured to be a measure of complexity, i.e. a measure of how difficult it is to obtain the corresponding field-theory state. Building on our aforementioned results for the entanglement entropy, we study this complexity for AdS Schwarzschild black holes in general dimensions. In particular, we draw conclusions on how efficient holography encodes the field theory and compare these results to MERA tensor networks, a numerical tool to study quantum many-body systems. Moreover, we holographically study the complexity of pure states. This sheds light on the notion of complexity in field theories. We calculate the complexity for a simple, calculable example: states obtained by conformal transformations of the vacuum state in AdS3/CFT2. In this lower-dimensional realization of AdS/CFT, the conformal group is infinite dimensional. We construct a continuous space of states with the same complexity as the vacuum state. Furthermore, we determine the change of complexity caused by small conformal transformation. The field-theory operator implementing this transformation is known and allows to compare the holographic results to field theory expectations.}, subject = {AdS-CFT-Korrespondenz}, language = {en} } @phdthesis{Hofmann2020, author = {Hofmann, Johannes Stephan}, title = {On the interplay of topology and interaction: A quantum Monte Carlo study}, doi = {10.25972/OPUS-20507}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205071}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Adding interactions to topological (non-)trivial free fermion systems can in general have four different effects: (i) In symmetry protected topological band insulators, the correlations may lead to the spontaneous breaking of some protecting symmetries by long-range order that gaps the topological boundary modes. (ii) In free fermion (semi-)metal, the interaction could vice versa also generate long-range order that in turn induces a topological mass term and thus generates non-trivial phases dynamically. (iii) Correlation might reduce the topological classification of free fermion systems by allowing adiabatic deformations between states of formerly distinct phases. (iv) Interaction can generate long-range entangled topological order in states such as quantum spin liquids or fractional quantum Hall states that cannot be represented by non-interacting systems. During the course of this thesis, we use numerically exact quantum Monte Carlo algorithms to study various model systems that (potentially) represent one of the four scenarios, respectively. First, we investigate a two-dimensional \$d_{xy}\$-wave, spin-singlet superconductor, which is relevant for high-\$T_c\$ materials such as the cuprates. This model represents nodal topological superconductors and exhibits chiral flat-band edge states that are protected by time-reversal and translational invariance. We introduce the conventional Hubbard interaction along the edge in order to study their stability with respect to correlations and find ferromagnetic order in case of repulsive interaction as well as charge-density-wave order and/or additional \$i\$s-wave pairing for attractive couplings. A mean-field analysis that, for the first time, is formulated in terms of the Majorana edge modes suggests that any order has normal and superconducting contributions. For example, the ferromagnetic order appears in linear superposition with triplet pairing. This finding is well confirmed by the numerically exact quantum Monte Carlo investigation. Second, we consider spinless electrons on a two-dimensional Lieb lattice that are subject to nearest-neighbor Coulomb repulsion. The low energy modes of the free fermion part constitute a spin-\$1\$ Dirac cone that might be gapped by several mass terms. One option breaks time-reversal symmetry and generates a topological Chern insulator, which mainly motivated this study. We employ two flavors of quantum Monte Carlo methods and find instead the formation of charge-density-wave order that breaks particle-hole symmetry. Additionally, due to sublattices of unequal size in Lieb lattices, this induces a finite chemical potential that drives the system away from half-filling. We argue that this mechanism potentially extends the range of solvable models with finite doping by coupling the Lieb lattice to the target system of interest. Third, we construct a system with four layers of a topological insulators and interlayer correlation that respects one independent time-reversal and a unitary \$\mathbb{Z}_2\$ symmetry. Previous studies claim a reduced topological classification from \$\mathbb{Z}\$ to \$\mathbb{Z}_4\$, for example by gapping out degenerate zero modes in topological defects once the correlation term is designed properly. Our interaction is chosen according to this analysis such that there should exist an adiabatic deformation between states whose topological invariant differs by \$\Delta w=\pm4\$ in the free fermion classification. We use a projective quantum Monte Carlo algorithm to determine the ground-state phase diagram and find a symmetry breaking regime, in addition to the non-interacting semi-metal, that separates the free fermion insulators. Frustration reduces the size of the long-range ordered region until it is replaced by a first order phase transition. Within the investigated range of parameters, there is no adiabatic path deforming the formerly distinct free fermion states into each other. We conclude that the prescribed reduction rules, which often use the bulk-boundary correspondence, are necessary but not sufficient and require a more careful investigation. Fourth, we study conduction electron on a honeycomb lattice that form a Dirac semi-metal Kondo coupled to spin-1/2 degrees of freedom on a Kagome lattice. The local moments are described by a variant of the Balents-Fisher-Girvin model that has been shown to host a ferromagnetic phase and a \$\mathbb{Z}_2\$ spin liquid at strong frustration. Here, we report the first numerical exact quantum Monte Carlo simulation of the Kondo-coupled system that does not exhibit the negative-sign problem. When the local moments form a ferromagnet, the Kondo coupling induces an anti-ferromagnetic mass term in the conduction-electron system. At large frustration, the Dirac cone remains massless and the spin system forms a \$\mathbb{Z}_2\$ spin liquid. Owing to the odd number of spins per unit cell, this constitutes a non-Fermi liquid that violates Luttinger's theorem which relates the Fermi volume to the particle density in a Fermi liquid. This phase is a specific realization of the so called 'fractional Fermi liquid` as it has been first introduced in the context of heavy fermion models.}, subject = {Monte-Carlo-Simulation}, language = {en} } @phdthesis{Beyl2020, author = {Beyl, Stefan}, title = {Hybrid Quantum Monte Carlo for Condensed Matter Models}, doi = {10.25972/OPUS-19122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191225}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In this thesis we consider the hybrid quantum Monte Carlo method for simulations of the Hubbard and Su-Schrieffer-Heeger model. In the first instance, we discuss the hybrid quantum Monte Carlo method for the Hubbard model on a square lattice. We point out potential ergodicity issues and provide a way to circumvent them by a complexification of the method. Furthermore, we compare the efficiency of the hybrid quantum Monte Carlo method with a well established determinantal quantum Monte Carlo method for simulations of the half-filled Hubbard model on square lattices. One reason why the hybrid quantum Monte Carlo method loses the comparison is that we do not observe the desired sub-quadratic scaling of the numerical effort. Afterwards we present a formulation of the hybrid quantum Monte Carlo method for the Su-Schrieffer-Heeger model in two dimensions. Electron-phonon models like this are in general very hard to simulate using other Monte Carlo methods in more than one dimensions. It turns out that the hybrid quantum Monte Carlo method is much better suited for this model . We achieve favorable scaling properties and provide a proof of concept. Subsequently, we use the hybrid quantum Monte Carlo method to investigate the Su-Schrieffer-Heeger model in detail at half-filling in two dimensions. We present numerical data for staggered valence bond order at small phonon frequencies and an antiferromagnetic order at high frequencies. Due to an O(4) symmetry the antiferromagnetic order is connected to a superconducting charge density wave. Considering the Su-Schrieffer-Heeger model without tight-binding hopping reveals an additional unconstrained Z_2 gauge theory. In this case, we find indications for π-fluxes and a possible Z_2 Dirac deconfined phase as well as for a columnar valence bond ordered state at low phonon energies. In our investigations of the several phase transitions we discuss the different possibilities for the underlying mechanisms and reveal first insights into a rich phase diagram.}, subject = {Monte-Carlo-Simulation}, language = {en} } @phdthesis{Kreikenbohm2019, author = {Kreikenbohm, Annika Franziska Eleonore}, title = {Classifying the high-energy sky with spectral timing methods}, doi = {10.25972/OPUS-19205}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192054}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Active galactic nuclei (AGN) are among the brightest and most frequent sources on the extragalactic X-ray and gamma-ray sky. Their central supermassive blackhole generates an enormous luminostiy through accretion of the surrounding gas. A few AGN harbor highly collimated, powerful jets in which are observed across the entire electromagnetic spectrum. If their jet axis is seen in a small angle to our line-of-sight (these objects are then called blazars) jet emission can outshine any other emission component from the system. Synchrotron emission from electrons and positrons clearly prove the existence of a relativistic leptonic component in the jet plasma. But until today, it is still an open question whether heavier particles, especially protons, are accelerated as well. If this is the case, AGN would be prime candidates for extragalactic PeV neutrino sources that are observed on Earth. Characteristic signatures for protons can be hidden in the variable high-energy emission of these objects. In this thesis I investigated the broadband emission, particularly the high-energy X-ray and gamma-ray emission of jetted AGN to address open questions regarding the particle acceleration and particle content of AGN jets, or the evolutionary state of the AGN itself. For this purpose I analyzed various multiwavelength observations from optical to gamma-rays over a period of time using a combination of state-of-the-art spectroscopy and timing analysis. By nature, AGN are highly variable. Time-resolved spectral analysis provided a new dynamic view of these sources which helped to determine distinct emission processes that are difficult to disentangle from spectral or timing methods alone. Firstly, this thesis tackles the problem of source classification in order to facilitate the search for interesting sources in large data archives and characterize new transient sources. I use spectral and timing analysis methods and supervised machine learning algorithms to design an automated source classification pipeline. The test and training sample were based on the third XMM-Newton point source catalog (3XMM-DR6). The set of input features for the machine learning algorithm was derived from an automated spectral modeling of all sources in the 3XMM-DR6, summing up to 137200 individual detections. The spectral features were complemented by results of a basic timing analysis as well as multiwavelength information provided by catalog cross-matches. The training of the algorithm and application to a test sample showed that the definition of the training sample was crucial: Despite oversampling minority source types with synthetic data to balance out the training sample, the algorithm preferably predicted majority source types for unclassified objects. In general, the training process showed that the combination of spectral, timing and multiwavelength features performed best with the lowest misclassification rate of \\sim2.4\\\%. The methods of time-resolved spectroscopy was then used in two studies to investigate the properties of two individual AGN, Mrk 421 and PKS 2004-447, in detail. Both objects belong to the class of gamma-ray emitting AGN. A very elusive sub-class are gamma-ray emitting Narrow Line Seyfert 1 (gNLS1) galaxies. These sources have been discovered as gamma-ray sources only recently in 2010 and a connection to young radio galaxies especially compact steep spectrum (CSS) radio sources has been proposed. The only gNLS1 on the Southern Hemisphere so far is PKS2004-447 which lies at the lower end of the luminosity distribution of gNLS1. The source is part of the TANAMI VLBI program and is regularly monitored at radio frequencies. In this thesis, I presented and analyzed data from a dedicated multiwavelength campaign of PKS 2004-447 which I and my collaborators performed during 2012 and which was complemented by individual observations between 2013 and 2016. I focussed on the detailed analysis of the X-ray emission and a first analysis of its broadband spectrum from radio to gamma-rays. Thanks to the dynamic SED I could show that earlier studies misinterpreted the optical spectrum of the source which had led to an underestimation of the high-energy emission and had ignited a discussion on the source class. I show that the overall spectral properties are consistent with dominating jet emission comprised of synchrotron radiation and inverse Compton scattering from accelerated leptons. The broadband emission is very similar to typical examples of a certain type of blazars (flat-spectrum radio quasars) and does not present any unusual properties in comparison. Interestingly, the VLBI data showed a compact jet structure and a steep radio spectrum consistent with a compact steep spectrum source. This classified PKS 2004-447 as a young radio galaxy, in which the jet is still developing. The investigation of Mrk 421 introduced the blazar monitoring program which I and collaborator have started in 2014. By observing a blazar simultaneously from optical, X-ray and gamma-ray bands during a VHE outbursts, the program aims at providing extraordinary data sets to allow for the generation of a series of dynamical SEDs of high spectral and temporal resolution. The program makes use of the dense VHE monitoring by the FACT telescope. So far, there are three sources in our sample that we have been monitoring since 2014. I presented the data and the first analysis of one of the brightest and most variable blazar, Mrk 421, which had a moderate outbreak in 2015 and triggered our program for the first time. With spectral timing analysis, I confirmed a tight correlation between the X-ray and TeV energy bands, which indicated that these jet emission components are causally connected. I discovered that the variations of the optical band were both correlated and anti-correlated with the high-energy emission, which suggested an independent emission component. Furthermore, the dynamic SEDs showed two different flaring behaviors, which differed in the presence or lack of a peak shift of the low-energy emission hump. These results further supported the hypothesis that more than one emission region contributed to the broadband emission of Mrk 421 during the observations. Overall,the studies presented in this thesis demonstrated that time-resolved spectroscopy is a powerful tool to classify both source types and emission processes of astronomical objects, especially relativistic jets in AGN, and thus provide a deeper understanding and new insights of their physics and properties.}, subject = {Astronomie}, language = {en} } @phdthesis{Northe2019, author = {Northe, Christian}, title = {Interfaces and Information in Gauge/Gravity Duality}, doi = {10.25972/OPUS-19159}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191594}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {This dissertation employs gauge/gravity duality to investigate features of ( 2 + 1 ) -dimensional quantum gravity in Anti-de Sitter space (AdS) and its relation to conformal field theory (CFT) in 1 + 1 dimensions. Concretely, we contribute to research on the frontier of gauge/gravity with condensed matter as well as the frontier with quantum informa- tion. The first research topic of this thesis is motivated by the Kondo model, which describes the screening of magnetic impurities in metals by conduction electrons at low temperatures. This process has a de- scription in the language of string theory via fluctuating surfaces in spacetime, called branes. At high temperatures the unscreened Kondo impurity is modelled by a stack of pointlike branes. At low tempera- tures this stack condenses into a single spherical, two-dimensional brane which embodies the screened impurity. This thesis demonstrates how this condensation process is naturally reinvoked in the holographic D1/D5 system. We find brane configu- rations mimicking the Kondo impurities at high and low energies and establish the corresponding brane condensation, where the brane grows two additional dimensions. We construct supergravity solutions, which fully take into account the effect of the brane on its surrounding space- time before and after the condensation takes place. This enables us to compute the full impurity entropies through which we confirm the validity of the g-theorem. The second research topic is rooted in the connection of geometry with quantum information. The motivation stems from the "complexity equals volume" proposal, which relates the volume of wormholes to the cicruit complexity of a thermal quantum state. We approach this proposal from a pragmatic point of view by studying the properties of certain volumes in gravity and their description in the CFT. We study subregion complexities, which are the volumes of the re- gions subtended by Ryu-Takayanagi (RT) geodesics. On the gravity side we reveal their topological properties in the vacuum and in ther- mal states, where they turn out to be temperature independent. On the field theory side we develop and proof a formula using kinematic space which computes subregion complexities without referencing the bulk. We apply our formula to global AdS 3 , the conical defect and a black hole. While entanglement, i.e. minimal boundary anchored geodesics, suffices to produce vacuum geometries, for the conical defect we also need geodesics windings non-trivially around the singularity. The black hole geometry requires additional thermal contributions.}, subject = {Information}, language = {en} } @phdthesis{Abt2019, author = {Abt, Raimond}, title = {Implementing Aspects of Quantum Information into the AdS/CFT Correspondence}, doi = {10.25972/OPUS-18801}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188012}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In recent years many discoveries have been made that reveal a close relation between quantum information and geometry in the context of the AdS/CFT correspondence. In this duality between a conformal quantum field theory (CFT) and a theory of gravity on Anti-de Sitter spaces (AdS) quantum information quantities in CFT are associated with geometric objects in AdS. Subject of this thesis is the examination of this intriguing property of AdS/CFT. We study two central elements of quantum information: subregion complexity -- which is a measure for the effort required to construct a given reduced state -- and the modular Hamiltonian -- which is given by the logarithm of a considered reduced state. While a clear definition for subregion complexity in terms of unitary gates exists for discrete systems, a rigorous formulation for quantum field theories is not known. In AdS/CFT, subregion complexity is proposed to be related to certain codimension one regions on the AdS side. The main focus of this thesis lies on the examination of such candidates for gravitational duals of subregion complexity. We introduce the concept of \textit{topological complexity}, which considers subregion complexity to be given by the integral over the Ricci scalar of codimension one regions in AdS. The Gauss-Bonnet theorem provides very general expressions for the topological complexity of CFT\(_2\) states dual to global AdS\(_3\), BTZ black holes and conical defects. In particular, our calculations show that the topology of the considered codimension one bulk region plays an essential role for topological complexity. Moreover, we study holographic subregion complexity (HSRC), which associates the volume of a particular codimension one bulk region with subregion complexity. We derive an explicit field theory expression for the HSRC of vacuum states. The formulation of HSRC in terms of field theory quantities may allow to investigate whether this bulk object indeed provides a concept of subregion complexity on the CFT side. In particular, if this turns out to be the case, our expression for HSRC may be seen as a field theory definition of subregion complexity. We extend our expression to states dual to BTZ black holes and conical defects. A further focus of this thesis is the modular Hamiltonian of a family of states \(\rho_\lambda\) depending on a continuous parameter \(\lambda\). Here \(\lambda\) may be associated with the energy density or the temperature, for instance. The importance of the modular Hamiltonian for quantum information is due to its contribution to relative entropy -- one of the very few objects in quantum information with a rigorous definition for quantum field theories. The first order contribution in \(\tilde{\lambda}=\lambda-\lambda_0\) of the modular Hamiltonian to the relative entropy between \(\rho_\lambda\) and a reference state \(\rho_{\lambda_0}\) is provided by the first law of entanglement. We study under which circumstances higher order contributions in \(\tilde{\lambda}\) are to be expected. We show that for states reduced to two entangling regions \(A\), \(B\) the modular Hamiltonian of at least one of these regions is expected to provide higher order contributions in \(\tilde{\lambda}\) to the relative entropy if \(A\) and \(B\) saturate the Araki-Lieb inequality. The statement of the Araki-Lieb inequality is that the difference between the entanglement entropies of \(A\) and \(B\) is always smaller or equal to the entanglement entropy of the union of \(A\) and \(B\). Regions for which this inequality is saturated are referred to as entanglement plateaux. In AdS/CFT the relation between geometry and quantum information provides many examples for entanglement plateaux. We apply our result to several of them, including large intervals for states dual to BTZ black holes and annuli for states dual to black brane geometries.}, subject = {AdS-CFT-Korrespondenz}, language = {en} } @phdthesis{Du2019, author = {Du, Yiqiang}, title = {Gauge/Gravity Duality with Backreacting Background}, doi = {10.25972/OPUS-18786}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187869}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The topic of this thesis is generalizations of the Anti de Sitter/Conformal Field Theory (AdS/CFT) correspondence, often referred to as holography, and their application to models relevant for condensed matter physics. A particular virtue of AdS/CFT is to map strongly coupled quantum field theories, for which calculations are inherently difficult, to more tractable classical gravity theories. I use this approach to study the crossover between Bose-Einstein condensation (BEC) and the Bardeen-Cooper-Schrieffer (BCS) superconductivity mechanism. I also study the phase transitions between the AdS black hole and AdS soliton spacetime in the presence of disorder. Moreover, I consider a holographic model of a spin impurity interacting with a strongly correlated electron gas, similar to the Kondo model. In AdS/CFT, the BEC/BCS crossover is modeled by a soliton configuration in the dual geometry and we study the BEC and BCS limits. The backreaction of the matter field on the background geometry is considered, which provides a new approach to study the BEC/BCS crossover. The behaviors of some physical quantities such as depletion of charge density under different strength of backreaction are presented and discussed. Moreover, the backreaction enables us to obtain the effective energy density of the soliton configurations, which together with the surface tension of the solitons leads to an argument for the occurrence of so called snake instability for dark solitons, i.e. for the solitons to form a vortex-like structures. Disordering strongly coupled and correlated quantum states of matter may lead to new insights into the physics of many body localized (MBL) strongly correlated states, which may occur in the presence of strong disorder. We are interested in potential insulator-metal transitions induced by disorder, and how disorder affects the Hawking-Page phase transition in AdS gravity in general. We introduce a metric ansatz and numerically construct the corresponding disordered AdS soliton and AdS black hole solutions, and discuss the calculation of the free energy in these states. In the Kondo effect, the rise in resistivity in metals with scarce magnetic impurities at low temperatures can be explained by the RG flow of the antiferromagnetic coupling between the impurity and conduction electrons in CFT. The generalizations to SU(N) in the large N limit make the treatment amenable to the holographic approach. We add a Maxwell term to a previously existing holographic model to study the conductivity of the itinerant electrons. Our goal is to find the log(T) behavior in the DC resistivity. In the probe limit, we introduce junction conditions to connect fields crossing the defect. We then consider backreactions, which give us a new metric ansatz and new junction conditions for the gauge fields.}, language = {en} } @phdthesis{Schnells2019, author = {Schnells, Vera}, title = {Fractional Insulators and their Parent Hamiltonians}, doi = {10.25972/OPUS-18561}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185616}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In the past few years, two-dimensional quantum liquids with fractional excitations have been a topic of high interest due to their possible application in the emerging field of quantum computation and cryptography. This thesis is devoted to a deeper understanding of known and new fractional quantum Hall states and their stabilization in local models. We pursue two different paths, namely chiral spin liquids and fractionally quantized, topological phases. The chiral spin liquid is one of the few examples of spin liquids with fractional statistics. Despite its numerous promising properties, the microscopic models for this state proposed so far are all based on non-local interactions, making the experimental realization challenging. In the first part of this thesis, we present the first local parent Hamiltonians, for which the Abelian and non-Abelian chiral spin liquids are the exact and, modulo a topological degeneracy, unique ground states. We have developed a systematic approach to find an annihilation operator of the chiral spin liquid and construct from it a many-body interaction which establishes locality. For various system sizes and lattice geometries, we numerically find largely gapped eigenspectra and confirm to an accuracy of machine precision the uniqueness of the chiral spin liquid as ground state of the respective system. Our results provide an exact spin model in which fractional quantization can be studied. Topological insulators are one of the most actively studied topics in current condensed matter physics research. With the discovery of the topological insulator, one question emerged: Is there an interaction-driven set of fractionalized phases with time reversal symmetry? One intuitive approach to the theoretical construction of such a fractional topological insulator is to take the direct product of a fractional quantum Hall state and its time reversal conjugate. However, such states are well studied conceptually and do not lead to new physics, as the idea of taking a state and its mirror image together without any entanglement between the states has been well understood in the context of topological insulators. Therefore, the community has been looking for ways to implement some topological interlocking between different spin species. Yet, for all practical purposes so far, time reversal symmetry has appeared to limit the set of possible fractional states to those with no interlocking between the two spin species. In the second part of this thesis, we propose a new universality class of fractionally quantized, topologically ordered insulators, which we name "fractional insulator". Inspired by the fractional quantum Hall effect, spin liquids, and fractional Chern insulators, we develop a wave function approach to a new class of topological order in a two-dimensional crystal of spin-orbit coupled electrons. The idea is simply to allow the topological order to violate time reversal symmetry, while all locally observable quantities remain time reversal invariant. We refer to this situation as "topological time reversal symmetry breaking". Our state is based on the Halperin double layer states and can be viewed as a two-layer system of an ↑-spin and a ↓-spin sphere. The construction starts off with Laughlin states for the ↑-spin and ↓-spin electrons and an interflavor term, which creates correlations between the two layers. With a careful parameter choice, we obtain a state preserving time reversal symmetry locally, and label it the "311-state". For systems of up to six ↑-spin and six ↓-spin electrons, we manage to construct an approximate parent Hamiltonian with a physically realistic, local interaction.}, subject = {Spinfl{\"u}ssigkeit}, language = {en} } @phdthesis{Kreter2019, author = {Kreter, Michael}, title = {Targeting the mystery of extragalactic neutrino sources - A Multi-Messenger Window to the Extreme Universe -}, doi = {10.25972/OPUS-17984}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179845}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Active Galactic Nuclei (AGNs) are among the most powerful and most intensively studied objects in the Universe. AGNs harbor a mass accreting supermassive black hole (SMBH) in their center and emit radiation throughout the entire electromagnetic spectrum. About 10\% show relativistic particle outflows, perpendicular to the so-called accretion disk, which are known as jets. Blazars, a subclass of AGN with jet orientations close to the line-of-sight of the observer, are highly variable sources from radio to TeV energies and dominate the γ- ray sky. The overall observed broadband emission of blazars is characterized by two distinct emission humps. While the low-energy hump is well described by synchrotron radiation of relativistic electrons, both leptonic processes such as inverse Compton scattering and hadronic processes such as pion-photoproduction can explain the radiation measured in the high-energy hump. Neutrinos, neutral, nearly massless particles, which only couple to the weak force 1 are exclusively produced in hadronic interactions of protons accelerated to relativistic energies. The detection of a high-energy neutrino from an AGN would provide an irrefutable proof of hadronic processes happening in jets. Recently, the IceCube neutrino observatory, located at the South Pole with a total instrumented volume of about one km 3 , provided evidence for a diffuse high-energy neutrino flux. Since the atmospheric neutrino spectrum falls steeply with energy, individual events with the clearest signature of coming from an extraterrestrial origin are those at the highest energies. These events are uniformly distributed over the entire sky and are therefore most likely of extragalactic nature. While the neutrino event (known as "BigBird") with a reconstructed energy of ∼ 2 PeV has already been detected in temporal and spatial agreement with a single blazar in an active phase, still, the chance coincidence for such an association is only on the order of ∼ 5\%. The neutrino flux at these high energies is low, so that even the brightest blazars only yield a Poisson probability clearly below unity. Such a small probability is in agreement with the observed all-sky neutrino flux otherwise, the sky would already be populated with numerous confirmed neutrino point sources. In neutrino detectors, events are typically detected in two different signatures 2 . So-called shower-like electron neutrino events produce a large particle cascade, which leads to a pre- cise energy measurement, but causes a large angular uncertainty. Track-like muon neutrino events, however, only produce a single trace in the detector, leading to a precise localization but poor energy reconstruction. The "BigBird" event was a shower-like neutrino event, tem- porally coincident with an activity phase of the blazar PKS 1424-418, lasting several months. Shower-like neutrino events typically lead to an angular resolution of ∼ 10 ◦ , while track-like events show a localization uncertainty of only ∼ 1 ◦ . Considering the potential detection of a track-like neutrino event in agreement with an activity phase of a single blazar lasting only days would significantly decrease the chance coincidence of such an association. In this thesis, a sample of bright blazars, continuously monitored by Fermi/LAT in the MeV to GeV regime, is considered as potential neutrino candidates. I studied the maximum possible neutrino ex- pectation of short-term blazar flares with durations of days to weeks, based on a calorimetric argumentation. I found that the calorimetric neutrino output of most short-term blazar flares is too small to lead to a substantial neutrino detection. However, for the most extreme flares, Poisson probabilities of up to ∼ 2\% are reached, so that the possibility of associated neutrino detections in future data unblindings of IceCube and KM3NeT seems reasonable. On 22 September 2017, IceCube detected the first track-like neutrino event (named IceCube- 170922A) coincident with a single blazar in an active phase. From that time on, the BL Lac object TXS 0506+056 was subject of an enormous multiwavelength campaign, revealing an en- hanced flux state at the time of the neutrino arrival throughout several different wavelengths. In this thesis, I first studied the long-term flaring behavior of TXS 0506+056, using more than nine years of Fermi/LAT data. I found that the activity phase in the MeV to GeV regime already started in early 2017, months before the arrival of IceCube-170922A. I performed a calorimetric analysis on a 3-day period around the neutrino arrival time and found no sub- stantial neutrino expectation from such a short time range. By computing the calorimetric neutrino prediction for the entire activity phase of TXS 0506+056 since early 2017, a possible association seems much more likely. However, the post-trial corrected chance coincidence for a long-term association between IceCube-170922A and the blazar TXS 0506+056 is on the level of ∼ 3.5 σ, establishing TXS 0506+056 as the most promising neutrino point source candidate in the scientific community. Another way to explain a high-energy neutrino signal without an observed astronomical counterpart, would be the consideration of blazars at large cosmological distances. These high-redshift blazars are capable of generating the observed high-energy neutrino flux, while their γ-ray emission would be efficiently downscattered by Extragalactic Background Light (EBL), making them almost undetectable to Fermi/LAT. High-redshift blazars are impor- tant targets, as they serve as cosmological probes and represent one of the most powerful classes of γ-ray sources in the Universe. Unfortunately, only a small number of such objects could be detected with Fermi/LAT so far. In this thesis, I perform a systematic search for flaring events in high-redshift γ-ray blazars, which long-term flux is just below the sensitiv- ity limit of Fermi/LAT. By considering a sample of 176 radio detected high-redshift blazars, undetected at γ-ray energies, I was able to increase the number of previously unknown γ-ray blazars by a total of seven sources. Especially the blazar 5BZQ J2219-2719, at a distance of z = 3.63 was found to be the most distant new γ-ray source identified within this thesis. In the final part of this thesis, I studied the flaring behavior of bright blazars, previously considered as potential neutrino candidates. While the occurrence of flaring intervals in blazars is of purely statistical nature, I found potential differences in the observed flaring behavior of different blazar types. Blazars can be subdivided into BL Lac (BLL) objects, Flat-Spectrum Radio Quasar (FSRQ) and Blazars Candidates of Uncertain type (BCU). FSRQs are typ- ically brighter than BL Lac or BCU type blazars, thus longer flares and more complicated substructures can be resolved. Although BL Lacs and BCUs are capable of generating signifi- cant flaring episodes, they are often identified close to the detection threshold of Fermi/LAT. Long-term outburst periods are exclusively observed in FSRQs, while BCUs can still con- tribute with flare durations of up to ten days. BL Lacs, however, are only detected in flaring states of less than four days. FSRQs are bright enough to be detected multiple times with time gaps between two subsequent flaring intervals ranging between days and months. While BL Lacs can show time gaps of more than 100 days, BCUs are only observed with gaps up to 20 days, indicating that these objects are detected only once in the considered time range of six years. The newly introduced parameter "Boxyness" describes the averaged flux in an identified flaring state and does highly depend on the shape of the considered flare. While perfectly box-like flares (flares which show a constant flux level over the entire time range) correspond to an averaged flux which is equal the maximum flare amplitude, irregular shaped flares generate a smaller averaged flux. While all blazar types show perfectly box-shaped daily flares, BL Lacs and BCUs are typically not bright enough to be resolved for multiple days. The work presented in this thesis illustrates the challenging state of multimessenger neu- trino astronomy and the demanding hunt for the first extragalactic neutrino point sources. In this context, this work discusses the multiwavelength emission behavior of blazars as a promising class of neutrino point sources and allows for predictions of current and future source associations}, language = {en} } @phdthesis{Reyes2019, author = {Reyes, Ignacio A.}, title = {Aspects of quantum gravity in AdS\(_3\)/CFT\(_2\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175613}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The quest for finding a unifying theory for both quantum theory and gravity lies at the heart of much of the research in high energy physics. Although recent years have witnessed spectacular experimental confirmation of our expectations from Quantum Field Theory and General Relativity, the question of unification remains as a major open problem. In this context, the perturbative aspects of quantum black holes represent arguably the best of our knowledge of how to proceed in this pursue. In this thesis we investigate certain aspects of quantum gravity in 2 + 1 dimensional anti-de Sitter space (AdS3), and its connection to Conformal field theories in 1 + 1 dimensions (CFT2), via the AdS/CFT correspondence. We study the thermodynamics properties of higher spin black holes. By focusing on the spin-4 case, we show that black holes carrying higher spin charges display a rich phase diagram in the grand canonical ensemble, including phase transitions of the Hawking-Page type, first order inter-black hole transitions, and a second order critical point. We investigate recent proposals on the connection between bulk codimension-1 volumes and computational complexity in the CFT. Using Tensor Networks we provide concrete evidence of why these bulk volumes are related to the number of gates in a quantum circuit, and exhibit their topological properties. We provide a novel formula to compute this complexity directly in terms of entanglement entropies, using techniques from Kinematic space. We then move in a slightly different direction, and study the quantum properties of black holes via de Functional Renormalisation Group prescription coming from Asymptotic safety. We avoid the arbitrary scale setting by restricting to a narrower window in parameter space, where only Newton's coupling and the cosmological constant are allowed to vary. By one assumption on the properties of Newton's coupling, we find black hole solutions explicitly. We explore their thermodynamical properties, and discover that very large black holes exhibit very unusual features.}, language = {en} } @phdthesis{Fink2019, author = {Fink, Mario}, title = {Unconventional and topological superconductivity in correlated non-centrosymmetric systems with spin-orbit coupling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175034}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Despite its history of more than one hundred years, the phenomenon of superconductivity has not lost any of its allure. During that time the concept and perception of the superconducting state - both from an experimental and theoretical point of view - has evolved in way that has triggered increasing interest. What was initially believed to simply be the disappearance of electrical resistivity, turned out to be a universal and inevitable result of quantum statistics, characterized by many more aspects apart from its zero resistivity. The insights of BCS-theory eventually helped to uncover its deep connection to particle physics and consequently led to the formulation of the Anderson-Higgs-mechanism. The very core of this theory is the concept of gauge symmetry (breaking). Within the framework of condensed-matter theory, gauge invariance is only one of several symmetry groups which are crucial for the description and classification of superconducting states. \\ In this thesis, we employ time-reversal, inversion, point group and spin symmetries to investigate and derive possible Hamiltonians featuring spin-orbit interaction in two and three spatial dimensions. In particular, this thesis aims at a generalization of existing numerical concepts to open up the path to spin-orbit coupled (non)centrosymmetric superconductors in multi-orbital models. This is done in a two-fold way: On the one hand, we formulate - based on the Kohn-Luttinger effect - the perturbative renormalization group in the weak-coupling limit. On the other hand, we define the spinful flow equations of the effective action in the framework of functional renormalization, which is valid for finite interaction strength as well. Both perturbative and functional renormalization groups produce a low-energy effective (spinful) theory that eventually gives rise to a particular superconducting state, which is investigated on the level of the irreducible two-particle vertex. The symbiotic relationship between both perturbative and functional renormalization can be traced back to the fact that, while the perturbative renormalization at infinitesimal coupling is only capable of dealing with the Cooper instability, the functional renormalization can investigate a plethora of instabilities both in the particle-particle and particle-hole channels. \\ Time-reversal and inversion are the two key symmetries, which are being used to discriminate between two scenarios. If both time-reversal and inversion symmetry are present, the Fermi surface will be two-fold degenerate and characterized by a pseudospin degree of freedom. In contrast, if inversion symmetry is broken, the Fermi surface will be spin-split and labeled by helicity. In both cases, we construct the symmetry allowed states in the particle-particle as well as the particle-hole channel. The methods presented are formally unified and implemented in a modern object-oriented reusable and extendable C++ code. This methodological implementation is employed to one member of both families of pseudospin and helicity characterized systems. For the pseudospin case, we choose the intriguing matter of strontium ruthenate, which has been heavily investigated for already twenty-four years, but still keeps puzzling researchers. Finally, as the helicity based application, we consider the oxide heterostructure LaAlO\$_{3}\$/SrTiO\$_{3}\$, which became famous for its highly mobile two- dimensional electron gas and is suspected to host topological superconductivity.}, subject = {Quanten-Vielteilchensysteme}, language = {en} } @phdthesis{Hetterich2018, author = {Hetterich, Daniel Marcus}, title = {Localization within disordered systems of star-like topology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-169318}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {This Thesis investigates the interplay of a central degree of freedom with an environment. Thereby, the environment is prepared in a localized phase of matter. The long-term aim of this setup is to store quantum information on the central degree of freedom while exploiting the advantages of localized systems. These many-body localized systems fail to equilibrate under the description of thermodynamics, mostly due to disorder. Doing so, they form the most prominent phase of matter that violates the eigenstate thermalization hypothesis. Thus, many-body localized systems preserve information about an initial state until infinite times without the necessity to isolate the system. This unique feature clearly suggests to store quantum information within localized environments, whenever isolation is impracticable. After an introduction to the relevant concepts, this Thesis examines to which extent a localized phase of matter may exist at all if a central degree of freedom dismantles the notion of locality in the first place. To this end, a central spin is coupled to the disordered Heisenberg spin chain, which shows many-body localization. Furthermore, a noninteracting analog describing free fermions is discussed. Therein, an impurity is coupled to an Anderson localized environment. It is found that in both cases, the presence of the central degree of freedom manifests in many properties of the localized environment. However, for a sufficiently weak coupling, quantum chaos, and thus, thermalization is absent. In fact, it is shown that the critical disorder, at which the metal-insulator transition of its environment occurs in the absence of the central degree of freedom, is modified by the coupling strength of the central degree of freedom. To demonstrate this, a phase diagram is derived. Within the localized phase, logarithmic growth of entanglement entropy, a typical signature of many-body localized systems, is increased by the coupling to the central spin. This property is traced back to resonantly coupling spins within the localized Heisenberg chain and analytically derived in the absence of interactions. Thus, the studied model of free fermions is the first model without interactions that mimics the logarithmic spreading of entanglement entropy known from many-body localized systems. Eventually, it is demonstrated that observables regarding the central spin significantly break the eigenstate thermalization hypothesis within the localized phase. Therefore, it is demonstrated how a central spin can be employed as a detector of many-body localization.}, subject = {Quanteninformatik}, language = {en} } @phdthesis{Lang2017, author = {Lang, Jean-Nicolas Olivier}, title = {Automation of electroweak NLO corrections in general models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154426}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The thesis deals with the automated generation and efficient evaluation of scattering amplitudes in general relativistic quantum field theories at one-loop order in perturbation theory. At the present time we lack signals beyond the Standard Model which, in the past, have guided the high-energy physics community, and ultimately led to the discovery of new physics phenomena. In the future, precision tests could acquire this guiding role by systematically probing the Standard Model and constraining Beyond the Standard Model theories. As current experimental constraints strongly favour Standard Model-like theories, only small deviations with respect to the Standard Model are expected which need to be studied in detail. The required precision demands one-loop corrections in all future analyses, ideally in a fully automated way, allowing to test a variety of observables in different models and in an effective field theory approach. In the process of achieving this goal we have developed an enhanced version of the tool Recola and on this basis the generalization Recola2. These tools represent fully automated tree- and one-loop-amplitude providers for the Standard Model, or in the case of Recola2 for general models. Concerning the algorithm, we use a purely numerical and fully recursive approach allowing for extreme calculations of yet unmatched complexity. Recola has led to the first computation involving 9-point functions. Beyond the Standard Model theories and Effective Field theories are integrated into the Recola2 framework as model files. Renormalized model files are produced with the newly developed tool Rept1l, which can perform the renormalization in a fully automated way, starting from nothing but Feynman rules. In view of validation, we have extended Recola2 to new gauges such as the Background-Field Method and the class of Rxi gauges. In particular, the Background-Field Method formulation for new theories serves as an automated validation, and is very useful in practical calculations and the formulation of renormalization conditions. We have applied the system to produce the first results for Higgs-boson production in Higgs strahlung and vector-boson fusion in the Two-Higgs-Doublet Model and the Higgs-Singlet Extension of the Standard Model. All in all, we have laid the foundation for an automated generation and computation of one-loop amplitudes within a large class of phenomenologically interesting theories. Furthermore, we enable the use of our system via a very flexible and dynamic control which does not require any intermediate intervention.}, subject = {Standardmodell }, language = {en} } @phdthesis{Geissler2017, author = {Geißler, Florian}, title = {Transport properties of helical Luttinger liquids}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153450}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The prediction and the experimental discovery of topological insulators has set the stage for a novel type of electronic devices. In contrast to conventional metals or semiconductors, this new class of materials exhibits peculiar transport properties at the sample surface, as conduction channels emerge at the topological boundaries of the system. In specific materials with strong spin-orbit coupling, a particular form of a two-dimensional topological insulator, the quantum spin Hall state, can be observed. Here, the respective one-dimensional edge channels are helical in nature, meaning that there is a locking of the spin orientation of an electron and its direction of motion. Due to the symmetry of time-reversal, elastic backscattering off interspersed impurities is suppressed in such a helical system, and transport is approximately ballistic. This allows in principle for the realization of novel energy-efficient devices, ``spintronic`` applications, or the formation of exotic bound states with non-Abelian statistics, which could be used for quantum computing. The present work is concerned with the general transport properties of one-dimensional helical states. Beyond the topological protection mentioned above, inelastic backscattering can arise from various microscopic sources, of which the most prominent ones will be discussed in this Thesis. As it is characteristic for one-dimensional systems, the role of electron-electron interactions can be of major importance in this context. First, we review well-established techniques of many-body physics in one dimension such as perturbative renormalization group analysis, (Abelian) bosonization, and Luttinger liquid theory. The latter allow us to treat electron interactions in an exact way. Those methods then are employed to derive the corrections to the conductance in a helical transport channel, that arise from various types of perturbations. Particularly, we focus on the interplay of Rashba spin-orbit coupling and electron interactions as a source of inelastic single-particle and two-particle backscattering. It is demonstrated, that microscopic details of the system, such as the existence of a momentum cutoff, that restricts the energy spectrum, or the presence of non-interacting leads attached to the system, can fundamentally alter the transport signature. By comparison of the predicted corrections to the conductance to a transport experiment, one can gain insight about the microscopic processes and the structure of a quantum spin Hall sample. Another important mechanism we analyze is backscattering induced by magnetic moments. Those findings provide an alternative interpretation of recent transport measurements in InAs/GaSb quantum wells.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Juergens2017, author = {J{\"u}rgens, Stefan}, title = {Correlated Topological Materials}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152202}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The topic of this PhD thesis is the combination of topologically non-trivial phases with correlation effects stemming from Coulomb interaction between the electrons in a condensed matter system. Emphasis is put on both emerging benefits as well as hindrances, e.g. concerning the topological protection in the presence of strong interactions. The physics related to topological effects is established in Sec. 2. Based on the topological band theory, we introduce topological materials including Chern insulators, topological insulators in two and three dimensions as well as Weyl semimetals. Formalisms for a controlled treatment of Coulomb correlations are presented in Sec. 3, starting with the topological field theory. The Random Phase Approximation is introduced as a perturbative approach, while in the strongly interacting limit the theory of quantum Hall ferromagnetism applies. Interactions in one dimension are special, and are treated through the Luttinger liquid description. The section ends with an overview of the expected benefits offered by the combination of topology and interactions, see Sec. 3.3. These ideas are then elaborated in the research part. In Chap. II, we consider weakly interacting 2D topological insulators, described by the Bernevig-Hughes-Zhang model. This is applicable, e.g., to quantum well structures made of HgTe/CdTe or InAs/GaSb. The bulk band structure is here a mixture stemming from linear Dirac and quadratic Schr{\"o}dinger fermions. We study the low-energy excitations in Random Phase Approximation, where a new interband plasmon emerges due to the combined Dirac and Schr{\"o}dinger physics, which is absent in the separate limits. Already present in the undoped limit, one finds it also at finite doping, where it competes with the usual intraband plasmon. The broken particle-hole symmetry in HgTe quantum wells allows for an effective separation of the two in the excitation spectrum for experimentally accessible parameters, in the right range for Raman or electron loss spectroscopy. The interacting bulk excitation spectrum shows here clear differences between the topologically trivial and topologically non-trivial regime. An even stronger signal in experiments is expected from the optical conductivity of the system. It thus offers a quantitative way to identify the topological phase of 2D topological insulators from a bulk measurement. In Chap. III, we study a strongly interacting system, forming an ordered, quantum Hall ferromagnetic state. The latter can arise also in weakly interacting materials with an applied strong magnetic field. Here, electrons form flat Landau levels, quenching the kinetic energy such that Coulomb interaction can be dominant. These systems define the class of quantum Hall topological insulators: topologically non-trivial states at finite magnetic field, where the counter-propagating edge states are protected by a symmetry (spatial or spin) other than time-reversal. Possible material realizations are 2D topological insulators like HgTe heterostructures and graphene. In our analysis, we focus on the vicinity of the topological phase transition, where the system is in a strongly interacting quantum Hall ferromagnetic state. The bulk and edge physics can be described by a nonlinear \sigma-model for the collective order parameter of the ordered state. We find that an emerging, continuous U(1) symmetry offers topological protection. If this U(1) symmetry is preserved, the topologically non-trivial phase persists in the presence of interactions, and we find a helical Luttinger liquid at the edge. The latter is highly tunable by the magnetic field, where the effective interaction strength varies from weakly interacting at zero field, K \approx 1, to diverging interaction strength at the phase transition, K -> 0. In the last Chap. IV, we investigate whether a Weyl semimetal and a 3D topological insulator phase can exist together at the same time, with a combined, hybrid surface state at the joint boundaries. An overlap between the two can be realized by Coulomb interaction or a spatial band overlap of the two systems. A tunnel coupling approach allows us to derive the hybrid surface state Hamiltonian analytically, enabling a detailed study of its dispersion relation. For spin-symmetric coupling, new Dirac nodes emerge out of the combination of a single Dirac node and a Fermi arc. Breaking the spin symmetry through the coupling, the dispersion relation is gapped and the former Dirac node gets spin-polarized. We propose experimental realizations of the hybrid physics, including compressively strained HgTe as well as heterostructures of topological insulator and Weyl semimetal materials, connected to each other, e.g., by Coulomb interaction.}, subject = {Topologie}, language = {en} } @phdthesis{Truestedt2016, author = {Tr{\"u}stedt, Jonas Elias}, title = {Long-wavelength radio observations of blazars with the Low-Frequency Array (LOFAR)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144406}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Aktive Galaxienkerne (AGN) geh{\"o}ren zu den hellsten Objekten in unserem Universum. Diese Galaxien werden als aktiv bezeichnet, da ihre Zentralregion heller ist als alle Sterne in einer Galaxie zusammen beitragen k{\"o}nnten. Das Zentrum besteht aus einem supermassiven schwarzen Loch, das von einer Akkretionsscheibe und weiter außerhalb von einem Torus aus Staub umgeben ist. Diese AGN k{\"o}nnen {\"u}ber das ganze elektromagnetische Spektrum verteilt gefunden werden, von Radiowellen {\"u}ber Wellenl{\"a}ngen im optischen und R{\"o}ntgenbereich bis hin zur \$\gamma\$-Strahlung. Allerdings sind nicht alle Objekte bei jeder Wellenl{\"a}nge detektierbar. In dieser Arbeit werden {\"u}berwiegend Blazare bei niedrigen Radiofrequenzen untersucht. Blazare geh{\"o}ren zu den radio-lauten AGN, welche {\"u}blicherweise stark kollimierte Jets senkrecht zur Akkretionsscheibe aussenden. Bei Blazaren sind diese Jets in die Richtung des Beobachters gerichtet und ihre Emissionen sind stark variabel. \\ AGN werden anhand ihres Erscheinungsbildes verschiedenen Untergruppen zugeordnet. Diese Untergruppen werden in einem vereinheitlichen AGN Modell zusammengef{\"u}hrt, welches besagt, dass diese Objekte sich nur in ihrer Luminosit{\"a}t und ihrem Winkel zur Sichtlinie unterscheiden. Blazare sind diejenigen Objekte, deren Jets in unsere Sichtrichtung zeigen, w{\"a}hrend die Objekte deren Jets eher senkrecht zur Sichtlinie orientiert sind als Radiogalaxien bezeichnet werden. Daraus folgt, dass Blazare die Gegenst{\"u}cke zu Radiogalaxien mit einem anderen Winkel zur Sichtlinie sind. Diese Beziehung soll unter anderem in dieser Arbeit untersucht werden. \\ Nach ihrer Entdeckung in den 1940er Jahren wurden die aktiven Galaxien bei allen zug{\"a}nglichen Wellenl{\"a}ngen untersucht. Durch die Entwicklung von Interferometern aus Radioteleskopen, welche eine erh{\"o}hte Aufl{\"o}sung bieten, konnten die Beobachtungen stark verbessert werden. In den letzten 20 Jahren wurden viele AGN regelm{\"a}ßig beobachtet. Dies erfolgte unter anderem durch Programme wie dem MOJAVE Programm, welches 274 AGNs regelm{\"a}ßig mithilfe der Technik der ``Very Long Baseline Interferometry" (VLBI) beobachtet. Durch diese Beobachtungen konnten Informationen zur Struktur und Entwicklung der AGN und Jets gesammelt werden. Allerdings sind die Prozesse zur Bildung von Jets und deren Kollimation noch nicht vollst{\"a}ndig bekannt. Durch relativistische Effekte ist es schwierig die eigentlichen Gr{\"o}ßen der Jets anstelle der scheinbaren zu messen. Um die intrinsische Energie von Jets zu messen, sollen die ausgedehnten Emissionsregionen untersucht werden, in denen die Jets enden und mit dem Intergalaktischen Medium interagieren. Beobachtungen bei niedrigen Radiofrequenzen sind empfindlicher um solche ausgedehnte, diffuse Emissionsregionen zu detektieren. \\ Seit Dezember 2012 ist ein neues Radioteleskop f{\"u}r niedrige Frequenzen in Betrieb, dessen Stationen aus Dipolantennen besteht. Die meisten dieser Stationen sind in den Niederlanden verteilt (38 Stationen) und werden durch 12 internationale Stationen in Deutschland, Frankreich, Schweden, Polen und England erg{\"a}nzt. Dieses Instrument tr{\"a}gt den Namen ``Low Frequency Array'' (LOFAR). LOFAR bietet die M{\"o}glichkeit bei Frequenzen von 30--250 MHz bei einer h{\"o}heren Aufl{\"o}sung als bisherige Radioteleskope zu beobachten (Winkelaufl{\"o}sungen unter 1 arcsec f{\"u}r das gesamte Netzwerk aus Teleskopen). \\ Diese Arbeit behandelt die Ergebnisse von Blazaruntersuchungen mithilfe von LOFAR-Beobachtungen. Daf{\"u}r wurden AGNs aus dem MOJAVE Programm verwendet um von den bisherigen Multiwellenl{\"a}ngen-Beobachtungen und Untersuchungen der Kinematik zu profitieren. Das ``Multifrequency Snapshot Sky Survey'' (MSSS) Projekt hat den gesamten Nordhimmel mit kurzen Beobachtungen abgerastert. Aus dem daraus resultierenden vorl{\"a}ufigen Katalog wurden die Flussdichten und Spektralindizes f{\"u}r MOJAVE-Blazare untersucht. In den kurzen Beobachtungen von MSSS sind nur die Stationen in den Niederlanden verwendet worden, wodurch Aufl{\"o}sung und Sensitivit{\"a}t begrenzt sind. F{\"u}r die Erstellung des vorl{\"a}ufigen Kataloges wurde die Aufl{\"o}sung auf \$\sim\$120 arcsec beschr{\"a}nkt. Ein weiterer Vorteil der MOJAVE Objekte ist die regelm{\"a}ßige Beobachtung der AGN mit dem ``Owens Vally Radio Observatory'' zur Erstellung von Lichtkurven bei 15 GHz. Dadurch ist es m{\"o}glich nahezu zeitgleiche Flussdichtemessungen bei 15 GHz zu den entsprechenden MSSS-Beobachtungen zu bekommen. Da diese Beobachtungen zu {\"a}hnlichen Zeitpunkten durchgef{\"u}hrt wurden sind diese Flussdichten weniger von der Variabilit{\"a}t der Blazare beeinflusst. Die Spektralindizes berechnet aus den Flussdichten von MSSS und OVRO k{\"o}nnen verwendet werden um den Anteil an ausgedehnter Emission der AGNs abzusch{\"a}tzen. \\ Im Vergleich der Flussdichten aus dem MSSS Katalog mit den Beobachtungen von OVRO f{\"a}llt auf, dass die Flussdichten bei niedrigen Frequenzen tendenziell h{\"o}her sind, was durch den h{\"o}heren Anteil an ausgedehnter Struktur zu erwarten ist. Die Spektralindexverteilung zwischen MSSS und OVRO zeigt ihren h{\"o}chsten Wert bei \$\sim-0.2\$. In der Verteilung existieren Objekte mit steilerem Spektralindex durch den h{\"o}heren Anteil von ausgedehnter Emission in der Gesamtflussdichte, doch {\"u}ber die H{\"a}lfte der untersuchten Objekte besitzt flache Spektralindizes. Die flachen Spektralindizes bedeuten, dass die Emissionen dieser Objekte gr{\"o}ßtenteils von relativistischen Effekten beeinflusst sind, die schon aus Beobachtungen bei GHz-Frequenzen bekannt sind. \\ Durch neue Auswertung der MSSS Beobachtungsdaten konnten Bilder bei einer verbesserten Aufl{\"o}sung von \$\sim\$20--30 arcsec erstellt werden, wodurch bei einigen Blazaren ausgedehnte Struktur detektiert werden konnte. Diese h{\"o}her aufgel{\"o}sten Bilder sind allerdings nicht komplett kalibriert und k{\"o}nnen somit nur f{\"u}r strukturelle Informationen verwendet werden. Die {\"U}berarbeitung der Beobachtungsdaten konnte f{\"u}r 93 Objekte f{\"u}r ein Frequenzband durchgef{\"u}hrt werden. F{\"u}r 45 der 93 Objekte konnten sogar alle vorhandenen Frequenzb{\"a}nder {\"u}berarbeitet werden und dadurch gemittelte Bilder erstellt werden. Diese Bilder werden in dieser Arbeit vorgestellt. Die resultierenden Bilder mit verbesserter Aufl{\"o}sung wurden verwendet um Objekte auszuw{\"a}hlen, die mit allen LOFAR-Stationen beobachtet und auf ausgedehnte Struktur untersucht werden k{\"o}nnen. \\ Im zweiten Teil der Arbeit werden die Ergebnisse von internationalen LOFAR Beobachtungen von vier Blazaren pr{\"a}sentiert. Da sich die Auswertung und Kalibration von internationalen LOFAR Beobachtungen noch in der Entwicklung befindet, wurde ein Schwerpunkt auf die Kalibration und deren Beschreibung gelegt. Die Kalibration kann zwar noch verbessert werden, aber die Bilder aus der angewandten Kalibration erreichen eine Aufl{\"o}sung von unter 1 arcsec. Die Struktur der untersuchten vier Blazare entspricht den Erwartungen f{\"u}r Radiogalaxien unter einem anderen Sichtwinkel. Durch die gemessenen Flussdichten der ausgedehnten Struktur aus den Helligkeitsverteilungen konnte die Luminosit{\"a}t der ausgedehnten Emissionen berechnet werden. Im Vergleich mit den Luminosit{\"a}ten, die von Radiogalaxien bekannt sind, entsprechen auch diese Werte den Erwartungen des vereinheitlichten AGN Modells. \\ Durch die in dieser Arbeit vorgestellte Kalibration k{\"o}nnen noch mehr Blazare mit LOFAR inklusive den internationalen Stationen beobachtet werden und somit Bilder der Struktur bei {\"a}hnlicher Aufl{\"o}sung erstellt werden. Durch eine erh{\"o}hte Anzahl von untersuchten Blazaren k{\"o}nnten anschließend auch statistisch signifikante Ergebnisse erzielt werden.\\}, subject = {Blazar}, language = {en} } @phdthesis{Lewandowska2015, author = {Lewandowska, Natalia Ewelina}, title = {A Correlation Study of Radio Giant Pulses and Very High Energy Photons from the Crab Pulsar}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123533}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Pulsars (in short for Pulsating Stars) are magnetized, fast rotating neutron stars. The basic picture of a pulsar describes it as a neutron star which has a rotation axis that is not aligned with its magnetic field axis. The emission is assumed to be generated near the magnetic poles of the neutron star and emitted along the open magnetic field lines. Consequently, the corresponding beam of photons is emitted along the magnetic field line axis. The non-alignment of both, the rotation and the magnetic field axis, results in the effect that the emission of the pulsar is only seen if its beam points towards the observer. The emission from a pulsar is therefore perceived as being pulsed although its generation is not. This rather simple geometrical model is commonly referred to as Lighthouse Model and has been widely accepted. However, it does not deliver an explanation of the precise mechanisms behind the emission from pulsars (see below for more details). Nowadays more than 2000 pulsars are known. They are observed at various wavelengths. Multiwavelength studies have shown that some pulsars are visible only at certain wavelengths while the emission from others can be observed throughout large parts of the electromagnetic spectrum. An example of the latter case is the Crab pulsar which is also the main object of interest in this thesis. Originating from a supernova explosion observed in 1054 A.D. and discovered in 1968, the Crab pulsar has been the central subject of numerous studies. Its pulsed emission is visible throughout the whole electromagnetic spectrum which makes it a key figure in understanding the possible mechanisms of multiwavelength emission from pulsars. The Crab pulsar is also well known for its radio emission strongly varying on long as well as on short time scales. While long time scale behaviour from a pulsar is usually examined through the use of its average profile (a profile resulting from averaging of a large number of individual pulses resulting from single rotations), short time scale behaviour is examined via its single pulses. The short time scale anomalous behaviour of its radio emission is commonly referred to as Giant Pulses and represents the central topic of this thesis. While current theoretical approaches place the origin of the radio emission from a pulsar like the Crab near its magnetic poles (Polar Cap Model) as already indicated by the Lighthouse model, its emission at higher frequencies, especially its gamma-ray emission, is assumed to originate further away in the geometrical region surrounding a pulsar which is commonly referred to as a pulsar magnetosphere (Outer Gap Model). Consequently, the respective emission regions are usually assumed not to be connected. However, past observational results from the Crab pulsar represent a contradiction to this assumption. Radio giant pulses from the Crab pulsar have been observed to emit large amounts of energy on very short time scales implying small emission regions on the surface of the pulsar. Such energetic events might also leave a trace in the gamma-ray emission of the Crab pulsar. The aim of this thesis is to search for this connection in the form of a correlation study between radio giant pulses and gamma-photons from the Crab pulsar. To make such a study possible, a multiwavelength observational campaign was organized for which radio observations were independently applied for, coordinated and carried out with the Effelsberg radio telescope and the Westerbork Synthesis Radio Telescope and gamma-ray observations with the Major Atmospheric Imaging Cherenkov telescopes. The corresponding radio and gamma-ray data sets were reduced and the correlation analysis thereafter consisted of three different approaches: 1) The search for a clustering in the differences of the times of arrival of radio giant pulses and gamma-photons; 2) The search for a linear correlation between radio giant pulses and gamma-photons using the Pearson correlation approach; 3) A search for an increase of the gamma-ray flux around occurring radio giant pulses. In the last part of the correlation study an increase of the number of gamma-photons centered on a radio giant pulse by about 17\% (in contrast with the number of gamma-photons when no radio giant pulse occurs in the same time window) was discovered. This finding suggests that a new theoretical approach for the emission of young pulsars like the Crab pulsar, is necessary.}, subject = {Pulsar}, language = {en} } @phdthesis{BolanosRosales2016, author = {Bola{\~n}os-Rosales, Alejandro}, title = {Low Mach Number Simulations of Convective Boundary Mixing in Classical Novae}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132863}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Classical novae are thermonuclear explosions occurring on the surface of white dwarfs. When co-existing in a binary system with a main sequence or more evolved star, mass accretion from the companion star to the white dwarf can take place if the companion overflows its Roche lobe. The envelope of hydrogen-rich matter which builds on top of the white dwarf eventually ignites under degenerate conditions, leading to a thermonuclear runaway and an explosion in the order of 1046 erg, while leaving the white dwarf intact. Spectral analyses from the debris indicate an abundance of isotopes that are tracers of nuclear burning via the hot CNO cycle, which in turn reveal some sort of mixing between the envelope and the white dwarf underneath. The exact mechanism is still a matter of debate. The convection and deflagration in novae develop in the low Mach number regime. We used the Seven League Hydro code (SLH ), which employs numerical schemes designed to correctly simulate low Mach number flows, to perform two and three- dimensional simulations of classical novae. Based on a spherically-symmetric model created with aid of a stellar evolution code, we developed our own nova model and tested it on a variety of numerical grids and boundary conditions for validation. We focused on the evolution of temperature, density and nuclear energy generation rate at the layers between white dwarf and envelope, where most of the energy is generated, to understand the structure of the transition region, and its effect on the nuclear burning. We analyzed the resulting dredge-up efficiency stemming from the convective motions in the envelope. Our models yield similar results to the literature, but seem to depend very strongly on the numerical resolution. We followed the evolution of the nuclear species involved in the CNO cycle and concluded that the thermonuclear reactions primarily taking place are those of the cold and not the hot CNO cycle. The reason behind this could be that under the conditions generally assumed for multi-dimensional simulations, the envelope is in fact not degenerate. We performed initial tests for 3D simulations and realized that alternative boundary conditions are needed.}, subject = {Nova}, language = {en} } @phdthesis{Pasold2016, author = {Pasold, Christian}, title = {QCD and electroweak NLO corrections to W + Photon and Z + Photon production including leptonic decays}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137456}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {At a hadron collider as the LHC or the Tevatron the production of a photon in association with a leptonically decaying vector boson represents an important class of processes. These processes stand out due to a very clean signal of a photon and two leptons. Furthermore they provide direct access to the photon-vector-boson couplings and thus an easy opportunity to test the gauge sector of the Standard Model. Within the scope of this work we present a full calculation of the next-to-leading-order corrections which include the O (αs) corrections of the strong interaction as well as the electroweak corrections of O (α) including all photon-induced contributions. For the creation of matrix elements we use methods based on Feynman diagrams. The IR singularities are treated with the dipole subtraction technique. In order to separate photons from jets, a quark-to-photon fragmentation function ´a la Glover / Morgan or Frixione's cone isolation is employed. Moreover, two different scenarios for charged leptons in the fi state were considered. The fi scenario for dressed leptons assumes that a charged lepton and a photon will be recombined if they are collinear. In the second scenario for bare muons it is assumed that leptons and photon can be separated in a detector also if they are collinear. For our calculation we implemented all corrections into a fl Monte Carlo program. Be- sides the computation of the total cross section this program is also able to generate diff tial distributions of several experimentally motivated observables. Apart from the expected large electroweak corrections in the high transverse-momentum regions and sizeable corrections in the resonance regions of the transverse or the invariant masses we found photon-induced corrections up to several 10\% for high transverse momenta. Within run I at the LHC for 7/8 TeV the experimental accuracy for Vγ production was roughly 10\%. Due to the higher luminosity at run II this accuracy will be reduced to the level of a few percent so that corrections of the same order within the theoretical predictions might become relevant. In this work we present results for the total cross section at the LHC for 7, 8 and 14 TeV and the corresponding distributions for 14 TeV.}, subject = {Quantenchromodynamik}, language = {en} } @phdthesis{Schulz2016, author = {Schulz, Robert Frank}, title = {A radio view of high-energy emitting AGNs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137358}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The most energetic versions of active galactic nuclei (AGNs) feature two highly-relativistic plasma outflows, so-called jets, that are created in the vicinity of the central supermassive black hole and evolve in opposite directions. In blazars, which dominate the extragalactic gamma-ray sky, the jets are aligned close to the observer's line of sight leading to strong relativistic beaming effects of the jet emission. Radio observations especially using very long baseline interferometry (VLBI) provide the best way to gain direct information on the intrinsic properties of jets down to sub-parsec scales, close to their formation region. In this thesis, I focus on the properties of three AGNs, IC 310, PKS 2004-447, and 3C 111 that belong to the small non-blazar population of gamma-ray-loud AGNs. In these kinds of AGNs, the jets are less strongly aligned with respect to the observer than in blazars. I study them in detail with a variety of radio astronomical instruments with respect to their high-energy emission and in the context of the large samples in the monitoring programmes MOJAVE and TANAMI. My analysis of radio interferometric observations and flux density monitoring data reveal very different characteristics of the jet emission in these sources. The work presented in this thesis illustrates the diversity of the radio properties of gamma-ray-loud AGNs that do not belong to the dominating class of blazars.}, subject = {Aktiver galaktischer Kern}, language = {en} } @phdthesis{Fuchs2016, author = {Fuchs, Moritz Jakob}, title = {Spin dynamics in the central spin model: Application to graphene quantum dots}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136079}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Due to their potential application for quantum computation, quantum dots have attracted a lot of interest in recent years. In these devices single electrons can be captured, whose spin can be used to define a quantum bit (qubit). However, the information stored in these quantum bits is fragile due to the interaction of the electron spin with its environment. While many of the resulting problems have already been solved, even on the experimental side, the hyperfine interaction between the nuclear spins of the host material and the electron spin in their center remains as one of the major obstacles. As a consequence, the reduction of the number of nuclear spins is a promising way to minimize this effect. However, most quantum dots have a fixed number of nuclear spins due to the presence of group III and V elements of the periodic table in the host material. In contrast, group IV elements such as carbon allow for a variable size of the nuclear spin environment through isotopic purification. Motivated by this possibility, we theoretically investigate the physics of the central spin model in carbon based quantum dots. In particular, we focus on the consequences of a variable number of nuclear spins on the decoherence of the electron spin in graphene quantum dots. Since our models are, in many aspects, based upon actual experimental setups, we provide an overview of the most important achievements of spin qubits in quantum dots in the first part of this Thesis. To this end, we discuss the spin interactions in semiconductors on a rather general ground. Subsequently, we elaborate on their effect in GaAs and graphene, which can be considered as prototype materials. Moreover, we also explain how the central spin model can be described in terms of open and closed quantum systems and which theoretical tools are suited to analyze such models. Based on these prerequisites, we then investigate the physics of the electron spin using analytical and numerical methods. We find an intriguing thermal flip of the electron spin using standard statistical physics. Subsequently, we analyze the dynamics of the electron spin under influence of a variable number of nuclear spins. The limit of a large nuclear spin environment is investigated using the Nakajima-Zwanzig quantum master equation, which reveals a decoherence of the electron spin with a power-law decay on short timescales. Interestingly, we find a dependence of the details of this decay on the orientation of an external magnetic field with respect to the graphene plane. By restricting to a small number of nuclear spins, we are able to analyze the dynamics of the electron spin by exact diagonalization, which provides us with more insight into the microscopic details of the decoherence. In particular, we find a fast initial decay of the electron spin, which asymptotically reaches a regime governed by small fluctuations around a finite long-time average value. Finally, we analytically predict upper bounds on the size of these fluctuations in the framework of quantum thermodynamics.}, subject = {Elektronenspin}, language = {en} } @phdthesis{Reinthaler2015, author = {Reinthaler, Rolf Walter}, title = {Charge and Spin Transport in Topological Insulator Heterojunctions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135611}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Over the last decade, the field of topological insulators has become one of the most vivid areas in solid state physics. This novel class of materials is characterized by an insulating bulk gap, which, in two-dimensional, time-reversal symmetric systems, is closed by helical edge states. The latter make topological insulators promising candidates for applications in high fidelity spintronics and topological quantum computing. This thesis contributes to bringing these fascinating concepts to life by analyzing transport through heterostructures formed by two-dimensional topological insulators in contact with metals or superconductors. To this end, analytical and numerical calculations are employed. Especially, a generalized wave matching approach is used to describe the edge and bulk states in finite size tunneling junctions on the same footing. The numerical study of non-superconducting systems focuses on two-terminal metal/topological insulator/metal junctions. Unexpectedly, the conductance signals originating from the bulk and the edge contributions are not additive. While for a long junction, the transport is determined purely by edge states, for a short junction, the conductance signal is built from both bulk and edge states in a ratio, which depends on the width of the sample. Further, short junctions show a non-monotonic conductance as a function of the sample length, which distinguishes the topologically non-trivial regime from the trivial one. Surprisingly, the non-monotonic conductance of the topological insulator can be traced to the formation of an effectively propagating solution, which is robust against scalar disorder. The analysis of the competition of edge and bulk contributions in nanostructures is extended to transport through topological insulator/superconductor/topological insulator tunneling junctions. If the dimensions of the superconductor are small enough, its evanescent bulk modes can couple edge states at opposite sample borders, generating significant and tunable crossed Andreev reflection. In experiments, the latter process is normally disguised by simultaneous electron transmission. However, the helical edge states enforce a spatial separation of both competing processes for each Kramers' partner, allowing to propose an all-electrical measurement of crossed Andreev reflection. Further, an analytical study of the hybrid system of helical edge states and conventional superconductors in finite magnetic fields leads to the novel superconducting quantum spin Hall effect. It is characterized by edge states. Both the helicity and the protection against scalar disorder of these edge states are unaffected by an in-plane magnetic field. At the same time its superconducting gap and its magnetotransport signals can be tuned in weak magnetic fields, because the combination of helical edge states and superconductivity results in a giant g-factor. This is manifested in a non-monotonic excess current and peak splitting of the dI/dV characteristics as a function of the magnetic field. In consequence, the superconducting quantum spin Hall effect is an effective generator and detector for spin currents. The research presented here deepens the understanding of the competition of bulk and edge transport in heterostructures based on topological insulators. Moreover it proposes feasible experiments to all-electrically measure crossed Andreev reflection and to test the spin polarization of helical edge states.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Posske2015, author = {Posske, Thore Hagen}, title = {Dressed Topological Insulators: Rashba Impurity, Kondo Effect, Magnetic Impurities, Proximity-Induced Superconductivity, Hybrid Systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131249}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.}, subject = {Topologischer Isolator}, language = {en} } @phdthesis{Rothe2015, author = {Rothe, Dietrich Gernot}, title = {Spin Transport in Topological Insulators and Geometrical Spin Control}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125628}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In the field of spintronics, spin manipulation and spin transport are the main principles that need to be implemented. The main focus of this thesis is to analyse semiconductor systems where high fidelity in these principles can be achieved. To this end, we use numerical methods for precise results, supplemented by simpler analytical models for interpretation. The material system of 2D topological insulators, HgTe/CdTe quantum wells, is interesting not only because it provides a topologically distinct phase of matter, physically manifested in its protected transport properties, but also since within this system, ballistic transport of high quality can be realized, with Rashba spin-orbit coupling and electron densities that are tunable by electrical gating. Extending the Bernvevig-Hughes-Zhang model for 2D topological insulators, we derive an effective four-band model including Rashba spin-orbit terms due to an applied potential that breaks the spatial inversion symmetry of the quantum well. Spin transport in this system shows interesting physics because the effects of Rashba spin-orbit terms and the intrinsic Dirac-like spin-orbit terms compete. We show that the resulting spin Hall signal can be dominated by the effect of Rashba spin-orbit coupling. Based on spin splitting due to the latter, we propose a beam splitter setup for all-electrical generation and detection of spin currents. Its working principle is similar to optical birefringence. In this setup, we analyse spin current and spin polarization signals of different spin vector components and show that large in-plane spin polarization of the current can be obtained. Since spin is not a conserved quantity of the model, we first analyse the transport of helicity, a conserved quantity even in presence of Rashba spin-orbit terms. The polarization defined in terms of helicity is related to in-plane polarization of the physical spin. Further, we analyse thermoelectric transport in a setup showing the spin Hall effect. Due to spin-orbit coupling, an applied temperature gradient generates a transverse spin current, i.e. a spin Nernst effect, which is related to the spin Hall effect by a Mott-like relation. In the metallic energy regimes, the signals are qualitatively explained by simple analytic models. In the insulating regime, we observe a spin Nernst signal that originates from the finite-size induced overlap of edge states. In the part on methods, we discuss two complementary methods for construction of effective semiconductor models, the envelope function theory and the method of invariants. Further, we present elements of transport theory, with some emphasis on spin-dependent signals. We show the connections of the adiabatic theorem of quantum mechanics to the semiclassical theory of electronic transport and to the characterization of topological phases. Further, as application of the adiabatic theorem to a control problem, we show that universal control of a single spin in a heavy-hole quantum dot is experimentally realizable without breaking time reversal invariance, but using a quadrupole field which is adiabatically changed as control knob. For experimental realization, we propose a GaAs/GaAlAs quantum well system.}, subject = {Elektronischer Transport}, language = {en} }