@phdthesis{Schulz2024, author = {Schulz, Daniel}, title = {Development of Inhibitory Control in Kindergarten Children}, doi = {10.25972/OPUS-35715}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357152}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {This dissertation explores the development and assessment of inhibitory control - a crucial component of executive functions - in young children. Inhibitory control, defined as the ability to suppress inappropriate responses (Verbruggen \& Logan, 2008), is essential for adaptable and goal-oriented behavior. The rapid and non-linear development of this cognitive function in early childhood presents unique challenges for accurate assessment. As children age, they often exhibit a ceiling effect in terms of response accuracy (Petersen et al., 2016), underscoring the need to consider response latency as well. Ideally, combining response latency with accuracy could yield a more precise measure of inhibitory control (e.g., Magnus et al., 2019), facilitating a detailed tracking of developmental changes in inhibitory control across a wider age spectrum. The three studies of this dissertation collectively aim to clarify the relationship between response accuracy, response latency, and inhibitory control across different stages of child development. Each study utilizes a computerized Pointing Stroop Task (Berger et al., 2000) to measure inhibitory control, examining the task's validity and the integration of dual metrics for a more comprehensive evaluation. The first study focuses on establishing the validity of using both response accuracy and latency as indicators of inhibitory control. Utilizing the framework of explanatory item-response modeling (De Boeck \& Wilson, 2004), the study revealed how the task characteristics congruency and item position influence both the difficulty level and timing aspects in young children's responses in the computerized Pointing Stroop task. Further, this study found that integrating response accuracy with latency, even in a basic manner, provides additional insights. Building upon these findings, the second study investigates the nuances of integrating response accuracy and latency, examining whether this approach can account for age-related differences in inhibitory control. It also explores whether response latencies may contain different information depending on the age and proficiency of the children. The study leverages novel and established methodological perspectives to integrate response accuracy and latency into a single metric, showing the potential applicability of different approaches for assessing inhibitory control development. The third study extends the investigation to a longitudinal perspective, exploring the dynamic relationship between response accuracy, latency, and inhibitory control over time. It assesses whether children who achieve high accuracy at an earlier age show faster improvement in response latency, suggesting a non-linear maturation pathway of inhibitory control. The study also examines if the predictive value of early response latency for later fluid intelligence is dependent on the response accuracy level. Together, these empirical studies contribute to a more robust understanding of the complex interaction between inhibitory control, response accuracy, and response latency, facilitating valid evaluations of cognitive capabilities in children. Moreover, the findings may have practical implications for designing educational strategies and clinical interventions that address the developmental trajectory of inhibitory control. The nuanced approach advocated in this dissertation suggests prioritizing accuracy in assessment and interventions during the early stages of children's cognitive development, gradually shifting the focus to response latency as children mature and secure their inhibitory control abilities.}, subject = {Kognitive Entwicklung}, language = {en} } @phdthesis{Chen2024, author = {Chen, Xinyu}, title = {How natural walking changes occipital alpha oscillations and concurrently modulates cognitive processes}, doi = {10.25972/OPUS-35295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-352958}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Humans actively interact with the world through a wide range of body movements. To understand human cognition in its natural state, we need to incorporate ecologically relevant body movement into our account. One fundamental body movement during daily life is natural walking. Despite its ubiquity, the impact of natural walking on brain activity and cognition has remained a realm underexplored. In electrophysiology, previous studies have shown a robust reduction of ongoing alpha power in the parieto-occipital cortex during body movements. However, what causes the reduction of ongoing alpha, namely whether this is due to body movement or prevalent sensory input changes, was unknown. To clarify this, study 1 was performed to test if the alpha reduction is dependent on visual input. I compared the resting state alpha power during natural walking and standing, in both light and darkness. The results showed that natural walking led to decreased alpha activity over the occipital cortex compared to standing, regardless of the lighting condition. This suggests that the movement-induced modulation of occipital alpha activity is not driven by visual input changes during walking. I argue that the observed alpha power reduction reflects a change in the state of the subject based on disinhibition induced by walking. Accordingly, natural walking might enhance visual processing and other cognitive processes that involve occipital cortical activity. I first tested this hypothesis in vision. Study 2 was performed to examine the possible effects of natural walking across visual processing stages by assessing various neural markers during different movement states. The findings revealed an amplified early visual response, while a later visual response remain unaffected. A follow-up study 3 replicated the walking-induced enhancement of the early visual evoked potential and showed that the enhancement was dependent on specific stimulus-related parameters (eccentricity, laterality, distractor presence). Importantly, the results provided evidence that the enhanced early visual responses are indeed linked to the modulation of ongoing occipital alpha power. Walking also modulated the stimulus-induced alpha power. Specifically, it showed that when the target appeared in the fovea area without a distractor, walking exhibited a significantly reduced modulation of alpha power, and showed the largest difference to standing condition. This effect of eccentricity indicates that during later visual processing stages, the visual input in the fovea area is less processed than in peripheral areas while walking. The two visual studies showed that walking leads to an enhancement in temporally early visual processes which can be predicted by the walking-induced change in ongoing alpha oscillation likely marking disinhibition. However, while walking affects neural markers of early sensory processes, it does not necessarily lead to a change in the behavioural outcome of a sensory task. The two visual studies suggested that the behavioural outcome seems to be mainly based on later processing stages. To test the effects of walking outside the visual domain, I turned to audition in study 4. I investigated the influence of walking in a particular path vs. simply stepping on auditory processing. Specifically, the study tested whether enhanced processing due to natural walking can be found in primary auditory brain activity and whether the processing preferences are dependent on the walking path. In addition, I tested whether the changed spatial processing that was reported in previous visual studies can be seen in the auditory domain. The results showed enhanced sensory processing due to walking in the auditory domain, which was again linked to the modulation of occipital alpha oscillation. The auditory processing was further dependent on the walking path. Additionally, enhanced peripheral sensory processing, as found in vision, was also present in audition. The findings outside vision supported the idea of natural walking affecting cognition in a rather general way. Therefore in my study 5, I examined the effect of natural walking on higher cognitive processing, namely divergent thinking, and its correlation with the modulation of ongoing alpha oscillation. I analyzed alpha oscillations and behavioural performance during restricted and unrestricted movement conditions while subjects completed a Guilford's alternate uses test. The results showed that natural walking, as well as missing body restriction, reduces the occipital alpha ongoing power independent of the task phase which goes along with higher test scores. The occipital alpha power reduction can therefore be an indicator of a changed state that allows improved higher cognitive processes. In summary, the research presented in this thesis highlights that natural walking can change different processes in the visual and auditory domain as well as higher cognitive processes. The effect can be attributed to the movement of natural walking itself rather than to changes in sensory input during walking. The results further indicate that the walking-induced modulation of ongoing occipital alpha oscillations drives the cognitive effects. We therefore suggest that walking changes the inhibitory state which can influence awareness and attention. Such a mechanism could facilitate an adaptive enhancement in cognitive processes and thereby optimize movement-related behaviour such as navigation.}, subject = {Walking}, language = {en} } @phdthesis{Pahl2011, author = {Pahl, Mario}, title = {Honeybee Cognition: Aspects of Learning, Memory and Navigation in a Social Insect}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66165}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Honeybees (Apis mellifera) forage on a great variety of plant species, navigate over large distances to crucial resources, and return to communicate the locations of food sources and potential new nest sites to nest mates using a symbolic dance language. In order to achieve this, honeybees have evolved a rich repertoire of adaptive behaviours, some of which were earlier believed to be restricted to vertebrates. In this thesis, I explore the mechanisms involved in honeybee learning, memory, numerical competence and navigation. The findings acquired in this thesis show that honeybees are not the simple reflex automats they were once believed to be. The level of sophistication I found in the bees' memory, their learning ability, their time sense, their numerical competence and their navigational abilities are surprisingly similar to the results obtained in comparable experiments with vertebrates. Thus, we should reconsider the notion that a bigger brain automatically indicates higher intelligence.}, subject = {Biene}, language = {en} }