@phdthesis{Hoerner2024, author = {H{\"o}rner, Michaela}, title = {The role of inflammation in hereditary spastic paraplegia type 11}, doi = {10.25972/OPUS-30336}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303368}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Hereditary spastic paraplegias (HSPs) are genetically-determined, neurodegenerative disorders characterized by progressive weakness and spasticity of the lower limbs. Spastic paraplegia type 11 (SPG11) is a complicated form of HSP, which is caused by mutations in the SPG11 gene encoding spatacsin, a protein possibly involved in lysosomal reformation. Based on our previous studies demonstrating that secondary neuroinflammation can be a robust amplifier of various genetically-mediated diseases of both the central and peripheral nervous system, we here test the possibility that neuroinflammation may modify the disease outcome also in a mouse model for SPG11. Spg11-knockout (Spg11-/-) mice develop early walking pattern and behavioral abnormalities, at least partially reflecting motor, and behavioral changes typical for patients. Furthermore, we detected a progressive increase in axonal damage and axonal spheroid formation in the white and grey matter compartments of the central nervous system of Spg11-/- mice. This was accompanied by a concomitant substantial increase of secondary inflammation by cytotoxic CD8+ and CD4+ T-lymphocytes. We here provide evidence that disease-related changes can be ameliorated/delayed by the genetic deletion of the adaptive immune system. Accordingly, we provide evidence that repurposing clinically approved immunomodulators (fingolimod/FTY720 or teriflunomide), that are in use for treatment of multiple sclerosis (MS), also improve disease symptoms in mice, when administered in an early (before neural damage) or late (after/during neural damage) treatment regime. This work provides strong evidence that immunomodulation can be a therapeutic option for the still untreatable SPG11, including its typical neuropsychological features. This poses the question if inflammation is not only a disease amplifier in SPG11 but can act as a unifying factor also for other genetically mediated disorders of the CNS. If true, this may pave the way to therapeutic options in a wide range of still untreatable, primarily genetic, neurological disorders by repurposing approved immunomodulators.}, subject = {Entz{\"u}ndung}, language = {en} } @phdthesis{Krampert2024, author = {Krampert, Laura}, title = {Dynamics of cardiac neutrophil diversity in murine myocardial infarction}, doi = {10.25972/OPUS-34957}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349576}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {After myocardial infarction, an inflammatory response is induced characterized by a sterile inflammation, followed by a reparative phase in order to induce cardiac healing. Neutrophils are the first immune cells that enter the ischemic tissue. Neutrophils have various functions in the ischemic heart, such as phagocytosis, production of reactive oxygen species or release of granule components. These functions can not only directly damage cardiac tissue, but are also necessary for initiating reparative effects in post-ischemic healing, indicating a dual role of neutrophils in cardiac healing after infarction. In recent years, evidence has been growing that neutrophils show phenotypic and functional differences in distinct homeostatic and pathogenic settings. Preliminary data of my working group using single-cell RNA-sequencing revealed the time- dependent heterogeneity of neutrophils, with different populations showing distinct gene expression profiles in ischemic hearts of mice, including the time-dependent appearance of a SiglecFhigh neutrophil population. To better understand the dynamics of neutrophil heterogeneity in the ischemic heart, my work aimed to validate previous findings at the protein level, as well as to investigate whether the distinct neutrophil populations show functional differences. Furthermore, in vivo depletion experiments were performed in order to modulate circulating neutrophil levels. Hearts, blood, bone marrow and spleens were processed and analyzed from mice after 1 day and 3 days after the onset of cardiac ischemia and analyzed using flow cytometry. Results showed that the majority of cardiac neutrophils isolated at day 3 after myocardial infarction were SiglecFhigh, whereas nearly no SiglecFhigh neutrophils could be isolated from ischemic hearts at day 1 after myocardial infarction. No SiglecFhigh neutrophils could be found in the blood, spleen and bone marrow either after 1 day or 3 days after myocardial infarction, indicating that the SiglecFhigh state of neutrophils is unique to the ischemic cardiac tissue. When I compared SiglecFhigh and SiglecFlow neutrophils regarding their phagocytosis activity and ROS production, SiglecFhigh neutrophils showed a higher phagocytosis ability than their SiglecFlow counterparts, as well as higher ROS production capacity. In vivo depletion experiments could not achieve successful and efficient depletion of cardiac neutrophils either 1 day or 3 days after myocardial infarction, but led to a shift of a higher percentage of SiglecFhigh expressing neutrophils in the depletion group. Bone marrow neutrophil levels only showed partial depletion at day 3 after MI. Regarding blood neutrophils, depletion efficiently reduced circulating neutrophils at both time points, 1 and 3 days after MI. To summarize, this work showed the time-dependent presence of different neutrophil states in the ischemic heart. The main population of neutrophils isolated 3 days after MI showed a high expression of SiglecF, a unique state that could not be detected at different time points or other organs. These SiglecFhigh neutrophils showed functional differences regarding their phagocytosis ability and ROS production. Further investigation is needed to reveal what role these SiglecFhigh neutrophils could play within the ischemic heart. To better target neutrophil depletion in vivo, more efficient or different anti-neutrophil strategies are needed.}, subject = {Neutrophiler Granulozyt}, language = {en} } @phdthesis{ZimmermannneePapp2024, author = {Zimmermann [n{\´e}e Papp], Lena}, title = {Platelets as modulators of blood-brain barrier disruption and inflammation in the pathophysiology of ischemic stroke}, doi = {10.25972/OPUS-30285}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Ischemia-reperfusion injury (I/R injury) is a common complication in ischemic stroke (IS) treatment, which is characterized by a paradoxical perpetuation of tissue damage despite the successful re-establishment of vascular perfusion. This phenomenon is known to be facilitated by the detrimental interplay of platelets and inflammatory cells at the vascular interface. However, the spatio-temporal and molecular mechanisms underlying these cellular interactions and their contribution to infarct progression are still incompletely understood. Therefore, this study intended to clarify the temporal mechanisms of infarct growth after cerebral vessel recanalization. The data presented here could show that infarct progression is driven by early blood-brain-barrier perturbation and is independent of secondary thrombus formation. Since previous studies unravelled the secretion of platelet granules as a molecular mechanism of how platelets contribute to I/R injury, special emphasis was placed on the role of platelet granule secretion in the process of barrier dysfunction. By combining an in vitro approach with a murine IS model, it could be shown that platelet α-granules exerted endothelial-damaging properties, whereas their absence (NBEAL2-deficiency) translated into improved microvascular integrity. Hence, targeting platelet α-granules might serve as a novel treatment option to reduce vascular integrity loss and diminish infarct growth despite recanalization. Recent evidence revealed that pathomechanisms underlying I/R injury are already instrumental during large vessel occlusion. This indicates that penumbral tissue loss under occlusion and I/R injury during reperfusion share an intertwined relationship. In accordance with this notion, human observational data disclosed the presence of a neutrophil dominated immune response and local platelet activation and secretion, by the detection of the main components of platelet α-granules, within the secluded vasculature of IS patients. These initial observations of immune cells and platelets could be further expanded within this thesis by flow cytometric analysis of local ischemic blood samples. Phenotyping of immune cells disclosed a yet unknown shift in the lymphocyte population towards CD4+ T cells and additionally corroborated the concept of an immediate intravascular immune response that is dominated by granulocytes. Furthermore, this thesis provides first-time evidence for the increased appearance of platelet-leukocyte-aggregates within the secluded human vasculature. Thus, interfering with immune cells and/or platelets already under occlusion might serve as a potential strategy to diminish infarct expansion and ameliorate clinical outcome after IS.}, subject = {Schlaganfall}, language = {en} } @phdthesis{Hugo2023, author = {Hugo, Julian}, title = {'Signal-close-to-noise' calcium activity reflects neuronal excitability}, doi = {10.25972/OPUS-29260}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-292605}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Chronic pain conditions are a major reason for the utilization of the health care system. Inflammatory pain states can persist facilitated by peripheral sensitization of nociceptors. The voltage-gated sodium channel 1.9 (NaV1.9) is an important regulator of neuronal excitability and is involved in inflammation-induced pain hypersensitivity. Recently, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (OxPAPC) was identified as a mediator of acute inflammatory pain and persistent hyperalgesia, suggesting an involvement in proalgesic cascades and peripheral sensitization. Peripheral sensitization implies an increase in neuronal excitability. This thesis aims to characterize spontaneous calcium activity in neuronal compartments as a proxy to investigate neuronal excitability, making use of the computational tool Neural Activity Cubic (NA3). NA3 allows automated calcium activity event detection of signal-close-to-noise calcium activity and evaluation of neuronal activity states. Additionally, the influence of OxPAPC and NaV1.9 on the excitability of murine dorsal root ganglion (DRG) neurons and the effect of OxPAPC on the response of DRG neurons towards other inflammatory mediators (prostaglandin E2, histamine, and bradykinin) is investigated. Using calcium imaging, the presence of spontaneous calcium activity in murine DRG neurons was established. NA3 was used to quantify this spontaneous calcium activity, which revealed decreased activity counts in axons and somata of NaV1.9 knockout (KO) neurons compared to wildtype (WT). Incubation of WT DRG neurons with OxPAPC before calcium imaging did not show altered activity counts compared to controls. OxPAPC incubation also did not modify the response of DRG neurons treated with inflammatory mediators. However, the variance ratio computed by NA3 conclusively allowed to determine neuronal activity states. In conclusion, my findings indicate an important function of NaV1.9 in determining the neuronal excitability of DRG neurons in resting states. OxPAPC exposition does not influence neuronal excitability nor sensitizes neurons for other inflammatory mediators. This evidence reduces the primary mechanism of OxPAPC-induced hyperalgesia to acute effects. Importantly, it was possible to establish an approach for unbiased excitability quantification of DRG neurons by calcium activity event detection and calcium trace variance analysis by NA3. It was possible to show that signal-close-to-noise calcium activity reflects neuronal excitability states.}, subject = {Entz{\"u}ndung}, language = {en} } @phdthesis{Thomas2021, author = {Thomas, Sarah Katharina}, title = {Design of novel IL-4 antagonists employing site-specific chemical and biosynthetic glycosylation}, doi = {10.25972/OPUS-17517}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175172}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The cytokines interleukin 4 (IL-4) and IL-13 are important mediators in the humoral immune response and play a crucial role in the pathogenesis of chronic inflammatory diseases, such as asthma, allergies, and atopic dermatitis. Hence, IL-4 and IL-13 are key targets for treatment of such atopic diseases. For cell signalling IL-4 can use two transmembrane receptor assemblies, the type I receptor consisting of receptors IL-4R and γc, and type II receptor consisting of receptors IL-4R and IL-13R1. The type II receptor is also the functional receptor of IL-13, receptor sharing being the molecular basis for the partially overlapping effects of IL-4 and IL-13. Since both cytokines require the IL-4R receptor for signal transduction, this allows the dual inhibition of both IL-4 and IL-13 by specifically blocking the receptor IL-4R. This study describes the design and synthesis of novel antagonistic variants of human IL-4. Chemical modification was used to target positions localized in IL-4 binding sites for γc and IL-13R1 but outside of the binding epitope for IL-4R. In contrast to existing studies, which used synthetic chemical compounds like polyethylene glycol for modification of IL-4, we employed glycan molecules as a natural alternative. Since glycosylation can improve important pharmacological parameters of protein therapeutics, such as immunogenicity and serum half-life, the introduced glycan molecules thus would not only confer a steric hindrance based inhibitory effect but simultaneously might improve the pharmacokinetic profile of the IL-4 antagonist. For chemical conjugation of glycan molecules, IL-4 variants containing additional cysteine residues were produced employing prokaryotic, as well as eukaryotic expression systems. The thiol-groups of the engineered cysteines thereby allow highly specific modification. Different strategies were developed enabling site-directed coupling of amine- or thiol- functionalized monosaccharides to introduced cysteine residues in IL-4. A linker-based coupling procedure and an approach requiring phenylselenyl bromide activation of IL-4 thiol-groups were hampered by several drawbacks, limiting their feasibility. Surprisingly, a third strategy, which involved refolding of IL-4 cysteine variants in the presence of thiol- glycans, readily allowed synthesis of IL-4 glycoconjugates in form of mixed disulphides in milligram amount. This approach, therefore, has the potential for large-scale synthesis of IL-4 antagonists with highly defined glycosylation. Obtaining a homogenous glycoconjugate with exactly defined glycan pattern would allow using the attached glycan structures for fine-tuning of pharmacokinetic properties of the IL-4 antagonist, such as absorption and metabolic stability. The IL-4 glycoconjugates generated in this work proved to be highly effective antagonists inhibiting IL-4 and/or IL-13 dependent responses in cell-based experiments and in in vitro binding studies. Glycoengineered IL-4 antagonists thus present valuable alternatives to IL-4 inhibitors used for treatment of atopic diseases such as the neutralizing anti-IL-4R antibody Dupilumab.}, subject = {Glykosylierung}, language = {en} } @phdthesis{Mayer2019, author = {Mayer, Rafaela}, title = {OxPAPC as an endogenous agonist of TRPA1 channels on nociceptors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175890}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Non-steroidal antiinflammatory drugs are most commonly used for inflammatory and postoperative pain. But they lack effectiveness and specificity, leading to severe side effects, like gastric ulcers, asthma and severe bleeding. Oxidized 1-palmitoyl-2-arachinidonoyl-sn-glycero-3-phosphocholine (OxPAPC) plays an important role in inflammatory pain. PAPC is a common phosphatidylcholine of membranes, which can be oxidized by reactive oxygen species. In preliminary experiments, our group found that local injection of OxPAPC in rat paws induces hyperalgesia. In this study we examined the effect of OxPAPC on transient receptor potential A1 (TRPA1), an ion channel expressed in C-fiber neurons. Furthermore, we investigated if intracellular cysteine residues of TRPA1 were necessary for agonist-channel-interactions and if a subsequent TRPA1 activation could be prevented by OxPAPC scavengers. To answer these questions, we performed calcium imaging using HEK-293 cells stably expressing hTRPA1, or transiently expressing the triple mutant channel hTRPA1-3C and na{\"i}ve DRG neurons. Cells were incubated with the ratiometric, fluorescent dye Fura-2/AM and stimulated with OxPAPC. The change of light emission after excitation with 340 and 380 nm wavelengths allowed conclusions regarding changes of intracellular calcium concentrations after TRPA1 activation. In our investigation we proved evidence that OxPAPC activates TRPA1, which caused a flow of calcium ions into the cytoplasm. The TRPA1-specific channel blocker HC-030031 eliminated this agonist-induced response. TRPA1-3C was not completely sensitive to OxPAPC. The peptide D-4F and the monoclonal antibody E06 neutralized OxPAPC-induced TRPA1 activation. In this work, the importance of OxPAPC as a key mediator of inflammatory pain and as a promising target for drug design is highlighted. Our results indicate that TRPA1 activation by OxPAPC involves cysteine-dependent mechanisms, but there are other, cysteine-independent activation mechanisms as well. Potential pharmaceuticals for the treatment of inflammatory pain are D-4F and E06, whose efficiency has recently been confirmed in the animal model by our research group.}, subject = {Schmerzforschung}, language = {en} } @phdthesis{Martin2018, author = {Martin, Corinna}, title = {Oxidized phospholipids and their role in neuronal excitation of primary sensory neurons}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160665}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Recently, our research group identified in a study novel proalgesic targets in acute and chronic inflammatory pain: oxidized phospholipids (OxPL). OxPL, endogenous chemical irritants, are generated in inflamed tissue and mediate their pain-inducing function by activating the transient receptor potential channels TRPA1 and TRPV1. Both channels are sensors for chemical stimuli on primary afferent nociceptors and are involved in nociception. Here, with the help of calcium imaging and whole cell patch clamp recording techniques, it was found that OxPL metabolites acutely activate TRPA1 and TRPV1 ion channels to excite DRG neurons. OxPL species act predominantly via TRPA1 ion channels and mediate long- lasting non-selective inward currents. Notably, one pure OxPL compound, PGPC, activated a TRPA1 mutant lacking the binding site for electrophilic agonists, suggesting that OxPL activate TRP ion channels by an indirect mechanical mechanism. Next, it was investigated how OxPL influence the excitability of primary sensory neurons. Acute stimulation and fast calcium imaging revealed that OxPL elicit repetitive, spike-like calcium transients in small- diameter DRG neurons, which were fully blocked by antagonists against TRPA1/V1 and N- type voltage-gated calcium channels. In search of a mechanism that drives repetitive spiking of DRG neurons, it was asked whether NaV1.9, a voltage-gated sodium channel involved in subthreshold excitability and nociception, is needed to trigger OxPL-induced calcium spikes and action potential firing. In electrophysiological recordings, both the combination of local application of OxPL and current injection were required to efficiently increase the action potential (AP) frequency of small-diameter sensory neurons. However, no difference was monitored in the resting membrane potential or OxPL-induced AP firing rate between wt and NaV1.9-deficient small diameter DRG neurons. To see whether NaV1.9 needs inflammatory conditions to be integrated in the OxPL-induced excitation cascade, sensory neurons were pretreated with a mixture of inflammatory mediators before OxPL application. Under inflammatory conditions both the AP and the calcium-spike frequency were drastically enhanced in response to an acute OxPL stimulus. Notably, this potentiation of OxPL stimuli was entirely lost in NaV1.9 deficient sensory neurons. Under inflammatory conditions, the resting membrane potential of NaV1.9-deficient neurons was more negative compared to wt neurons, suggesting that NaV1.9 shows resting activity only under inflammatory conditions. In conclusion, OxPL are endogenous irritants that induce excitability in small-diameter DRG neurons, a cellular model of nociceptors, via TRP activation. This effect is potentiated under inflammatory conditions. Under these conditions, NaV1.9 functions as essential mediator as it eases the initiation of excitability after OxPL stimulation. As mutants in the human NaV1.9 mediate an enhanced or painless perception, this study provides new insight into the mechanism on how NaV1.9 amplifies stimuli of endogenous irritants under inflammatory conditions.}, subject = {Entz{\"u}ndung}, language = {en} } @phdthesis{Deppermann2017, author = {Deppermann, Carsten}, title = {The role of platelet granules in thrombosis, hemostasis, stroke and inflammation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121010}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Platelets are small anucleate cell fragments derived from bone marrow megakaryocytes (MKs) and are important players in hemostasis and thrombosis. Platelet granules store factors which are released upon activation. There are three major types of platelet granules: alpha-granules, dense granules and lysosomes. While dense granules contain non-proteinacious factors which support platelet aggregation and adhesion, platelet alpha-granules contain more than 300 different proteins involved in various functions such as inflammation, wound healing and the maintenanceof vascular integrity, however, their functional significance in vivo remains unknown. This thesis summarizes analyses using three mouse models generated to investigate the role of platelet granules in thrombosis, hemostasis, stroke and inflammation. Unc13d-/- mice displayed defective platelet dense granule secretion, which resulted in abrogated thrombosis and hemostasis. Remarkably, Munc13-4-deficient mice were profoundly protected from infarct progression following transient middle cerebral artery occlusion (tMCAO) and this was not associated with increased intracranial bleeding indicating an essential involvementof dense granule secretion in infarct progression but not intracranial hemostasis during acute stroke with obvious therapeutic implications. In the second part of this thesis, the role of platelet alpha-granules was investigated using the Nbeal2-/- mouse. Mutations in NBEAL2 have been linked to the gray platelet syndrome (GPS), a rare inherited bleeding disorder. Nbeal2-/- mice displayed the characteristics of human GPS, with defective alpha-granule biogenesis in MKs and their absence from platelets. Nbeal2-deficiency did not affect MK differentiation and proplatelet formation in vitro or platelet life span in vivo. Nbeal2-/- platelets displayed impaired adhesion, aggregation, and coagulant activity ex vivo that translated into defective arterial thrombus formation and protection from thrombo-inflammatory brain infarction in vivo. In a model of skin wound repair, Nbeal2-/- mice exhibited impaired development of functional granulation tissue due to severely reduced differentiation of myofibroblasts. In the third part, the effects of combined deficiency of alpha- and dense granule secretion were analyzed using Unc13d-/-/Nbeal2-/- mice. Platelets of these mice showed impaired aggregation and adhesion to collagen under flow ex vivo, which translated into infinite tail bleeding times and severely defective arterial thrombus formation in vivo. When subjected to in vivo models of skin or lung inflammation, the double mutant mice showed no signs of hemorrhage. In contrast, lack of platelet granule release resulted in impaired vascular integrity in the ischemic brain following tMCAO leading to increased mortality. This indicates that while defective dense granule secretion or the paucity of alpha-granules alone have no effect on vascular integrity after stroke, the combination of both impairs vascular integrity and causes an increase in mortality.}, subject = {Thrombozyten}, language = {en} } @phdthesis{Chaudhari2013, author = {Chaudhari, Sweena M.}, title = {Role of Hypoxia-Inducible Factor (HIF) 1α in Dendritic Cells in Immune Regulation of Atherosclerosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-91853}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Atherosclerosis is the underlying cause of cardiovascular diseases and a major threat to human health worldwide. It involves not only accumulation of lipids in the vessel wall but a chronic inflammatory response mediated by highly specific cellular and molecular responses. Macrophages and dendritic cells (DCs) play an essential role in taking up modified lipids and presenting them to T and B lymphocytes, which promote the immune response. Enhanced activation, migration and accumulation of inflammatory cells at the local site leads to formation of atherosclerotic plaques. Atherosclerotic plaques become hypoxic due to reduced oxygen diffusion and high metabolic demand of accumulated cells. The various immune cells experience hypoxic conditions locally and inflammatory stimuli systemically, thus up-regulating Hypoxia-inducible factor 1α. Though the role of HIF1α in macrophages and lymphocytes has been elucidated, its role in DCs still remains controversial, especially with respect to atherosclerosis. In this project work, the role of HIF1α in DCs was investigated by using a cell specific knockout mouse model where HIF1α was deleted in CD11c+ cells. Aortic root sections from atherosclerotic mice showed presence of hypoxia and up-regulation of HIF1α which co-localized with CD11c+ cells. Atherosclerotic splenic DCs also displayed enhanced expression of HIF1α, proving non-hypoxic stimulation of HIF1α due to systemic inflammation. Conditional knockout (CKO) mice lacking HIF1α in CD11c+ cells, under baseline conditions did not show changes in immune responses suggesting effects of HIF1α only under inflammatory conditions. When these mice were crossed to the Ldlr-/- line and placed on 8 weeks of high fat diet, they developed enhanced plaques with higher T-cell infiltration as compared to the wild-type (WT) controls. The plaques were of a complex phenotype, defined by increased percent of smooth muscle cells (SMCs) and necrotic core area and reduced percent of macrophages and DCs. The mice also displayed enhanced T-cell activation and a Th1 bias in the periphery. The CKO DCs themselves exhibited increased expression of IL 12 and a higher capacity to proliferate and polarize naive T cells to the Th1 phenotype in vitro. The DCs also showed decreased expression of STAT3, in line with the inhibitory effects of STAT3 on DC activation seen in previous studies. When STAT3 was overexpressed in DCs in vitro, IL 12 was down-regulated, but its expression increased significantly on STAT3 inhibition using a mutant vector. In addition, when STAT3 was overexpressed in DCs in vivo using a Cre regulated lentiviral system, the mice showed decreased plaque formation compared to controls. Interestingly, the effects of STAT3 modulation were similar in WT and CKO mice, intending that STAT3 lies downstream of HIF1α. Finally, using a chromatin immunoprecipitation assay (ChIP), it was confirmed that HIF1α binds to hypoxia responsive elements (HREs) in the Stat3 gene promoter thus regulating its expression. When DCs lack HIF1α, STAT3 expression is not stimulated and hence IL 12 production by DCs is uninhibited. This excessive IL 12 can activate naive T cells and polarize them to the Th1 phenotype, thereby enhancing atherosclerotic plaque progression. This project thus concludes that HIF1α restrains DC activation via STAT3 generation and prevents excessive production of IL 12 that helps to keep inflammation and atherosclerosis under check.}, subject = {Dendritische Zelle}, language = {en} } @phdthesis{Panjwani2015, author = {Panjwani, Priyadarshini}, title = {Induction, Imaging, Histo-morphological and Molecular Characterization of Myocarditis in the Rat to Explore Novel Diagnostic Strategies for the Detection of Myocardial Inflammation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122469}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Fulminant myocarditis is rare but a potentially life-threatening disease. Acute or mild myocarditis following acute ischemia is generally associated with a profound activation of the host's immune system. On one hand this is mandatory to protect the host's heart by fighting the invading agents (i.e., bacteria, viruses or other microbial agents) and/or to induce healing and repair processes in the damaged myocardium. On other hand, uncontrolled activation of the immune system may result in the generation of auto-reactive (not always beneficial) immune cells. Myocarditis or inflammatory cardiomyopathy is characterized by focal or diffuse infiltrates, myocyte necrosis and/or apoptosis and subsequent fibrotic replacement of the heart muscle. In humans, about 30\% of the myocarditis-patients develop dilated cardiomyopathy. As the clinical picture of myocarditis is multifaceted, it is difficult to diagnose the disease. Therefore, the main goal of the present work was to test and further develop novel non-invasive methods for the detection of myocardial inflammation by employing both contrast enhanced MRI techniques as well as novel nuclear tracers that are suitable for in vivo PET/ SPECT imaging. As a part of this thesis, a pre-clinical animal model was successfully established by immunizing female Lewis rats with whole-porcine cardiac myosin (CM). Induction of Experimental Autoimmune Myocarditis (EAM) is considered successful when anti-myosin antibody titers are increased more than 100-fold over control animals and pericardial effusion develops. In addition, cardiac tissues from EAM-rats versus controls were analyzed for the expression of various pro-inflammatory and fibrosis markers. To further exploit non-invasive MRI techniques for the detection of myocarditis, our EAM-rats were injected either with (1) ultra-small Paramagnetic iron oxide particles (USPIO's; Feraheme®), allowing for in vivo imaging , (2) micron sized paramagnetic iron oxide particles (MPIO) for ex vivo inflammatory cell-tracking by cMRI, or (3) with different radioactive nuclear tracers (67gallium citrate, 68gallium-labeled somatostatin analogue, and 68gallium-labeled cyclic RGD-peptide) which in the present work have been employed for autoradiographic imaging, but in principle are also suitable for in vivo nuclear imaging (PET/SPECT). In order to compare imaging results with histology, consecutive heart sections were stained with hematoxylin \& eosin (HE, for cell infiltrates) and Masson Goldner trichrome (MGT, for fibrosis); in addition, immuno-stainings were performed with anti-CD68 (macrophages), anti-SSRT2A (somatostatin receptor type 2A), anti-CD61 (β3-integrins) and anti-CD31 (platelet endothelial cell adhesion molecule 1). Sera from immunized rats strongly reacted with cardiac myosin. In immunized rats, echocardiography and subsequent MRI revealed huge amounts of pericardial effusion (days 18-21). Analysis of the kinetics of myocardial infiltrates revealed maximal macrophage invasion between days 14 and 28. Disappearance of macrophages resulted in replacement-fibrosis in formerly cell-infiltrated myocardial areas. This finding was confirmed by the time-dependent differential expression of corresponding cytokines in the myocardium. Immunized animals reacted either with an early or a late pattern of post-inflammation fibrosis. Areas with massive cellular infiltrates were easily detectible in autoradiograms showing a high focal uptake of 67gallium-citrate and 68gallium labeled somatostatin analogues (68Ga DOTA-TATE). Myocardium with a loss of cardiomyocytes presented a high uptake of 68gallium labeled cyclic RGD-peptide (68Ga NOTA-RGD). MRI cell tracking experiments with Feraheme® as the contrast-agent were inconclusive; however, strikingly better results were obtained when MPIOs were used as a contrast-agent: histological findings correlated well with in vivo and ex vivo MPIO-enhanced MRI images. Imaging of myocardial inflammatory processes including the kinetics of macrophage invasion after microbial or ischemic damage is still a major challenge in, both animal models and in human patients. By applying a broad panel of biochemical, histological, molecular and imaging methods, we show here that different patterns of reactivity may occur upon induction of myocarditis using one and the same rat strain. In particular, immunized Lewis rats may react either with an early or a late pattern of macrophage invasion and subsequent post-inflammation fibrosis. Imaging results achieved in the acute inflammatory phase of the myocarditis with MPIOs, 67gallium citrate and 68gallium linked to somatostatin will stimulate further development of contrast agents and radioactive-nuclear tracers for the non-invasive detection of acute myocarditis and in the near future perhaps even in human patients.}, subject = {Ratte}, language = {en} } @phdthesis{Heydenreich2013, author = {Heydenreich, Nadine}, title = {Studies on the contact-kinin system and macrophage activation in experimental focal cerebral ischemia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-94534}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Traditionally, ischemic stroke has been regarded as the mere consequence of cessation of cerebral blood flow, e.g. due to the thromboembolic occlusion of a major brain supplying vessel. However, the simple restoration of blood flow via thrombolysis and/or mechanical recanalization alone often does not guarantee a good functional outcome. It appears that secondary detrimental processes are triggered by hypoxia and reoxygenation, which are referred to as ischemia/reperfusion (I/R) injury. During recent years it became evident that, beside thrombosis inflammation and edema formation are key players in the pathophysiology of cerebral ischemia. The contact-kinin system represents an interface between thrombotic, inflammatory and edematous circuits. It connects the intrinsic coagulation pathway with the plasma kallikrein-kinin system (KKS) via coagulation factor FXII. The serine protease inhibitor C1-inhibitor (C1-INH) has a wide spectrum of inhibitory activities and counteracts activation of the contact-kinin system at multiple levels. The first part of the thesis aimed to multimodally interfere with infarct development by C1-INH and to analyze modes of actions of human plasma derived C1-INH Berinert® P in a murine model of focal cerebral ischemia. It was shown that C57BL/6 mice following early application of 15.0 units (U) C1-INH, but not 7.5 U developed reduced brain infarctions by ~60\% and less neurological deficits in the model of transient occlusion of the middle cerebral artery (tMCAO). This protective effect was preserved at more advanced stages of infarction (day 7), without increasing the risk of intracerebral bleeding or affecting normal hemostasis. Less neurological deficits could also be observed with delayed C1-INH treatment, whereas no improvement was achieved in the model of permanent MCAO (pMCAO). Blood-brain-barrier (BBB) damage, inflammation and thrombosis were significantly improved following 15.0 U C1-INH application early after onset of ischemia. Based on its strong antiedematous, antiinflammatory and antithrombotic properties C1-INH constitutes a multifaceted therapeutic compound that protects from ischemic neurodegeneration in 'clinically meaningful' settings. The second part of the thesis addresses the still elusive functional role of macrophages in the early phase of stroke, especially the role of the macrophage-specific adhesion molecule sialoadhesin (Sn). For the first time, sialoadhesin null (Sn-/-) mice, homozygous deficient for Sn on macrophages were subjected to tMCAO to assess the clinical outcome. Neurological and motor function was significantly improved in Sn-/- mice on day 1 after ischemic stroke compared with wildtype (Sn+/+) animals. These clinical improvements were clearly detectable even on day 3 following tMCAO. Infarctions on day 1 were roughly the same size as in Sn+/+ mice and did not grow until day 3. No intracerebral bleeding could be detected at any time point of data acquisition. Twenty four hours after ischemia a strong induction of Sn was detectable in Sn+/+ mice, which was previously observed only on perivascular macrophages in the normal brain. Deletion of Sn on macrophages resulted in less disturbance of the BBB and a reduced number of CD11b+ (specific marker for macrophages/microglia) cells, which, however, was not associated with altered expression levels of inflammatory cytokines. To further analyze the function of macrophages following stroke this thesis took advantage of LysM-Cre+/-/IKK2-/- mice bearing a nuclear factor (NF)-ϰB activation defect in the myeloid lineage, including macrophages. Consequently, macrophages were not able to synthesize inflammatory cytokines under the control of NF-ϰB. Surprisingly, infarct sizes and neurological deficits upon tMCAO were roughly the same in conditional knockout mice and respective wildtype littermates. These findings provide evidence that macrophages do not contribute to tissue damage and neurological deficits, at least, not by release of inflammatory cytokines in the early phase of cerebral ischemia. In contrast, Sn which is initially expressed on perivascular macrophages and upregulated on macrophages/microglia within the parenchyma following stroke, influenced functional outcome.}, subject = {Blut-Hirn-Schranke}, language = {en} } @phdthesis{Li2014, author = {Li, Xiang}, title = {Molecular imaging of inflammation in atherosclerosis: Preclinical study in Apolipoprotein E-Deficient mice and preliminary evaluation in human using positron emission tomography}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104622}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Motivation and Aim: Cardiovascular disease has been the leading cause of mortality and morbidity throughout the world. In developed countries, cardiovascular diseases are already responsible for a majority of deaths and will become the pre-eminent health problem worldwide (1,2). Rupture of atherosclerotic plaque accounts for approximately 70\% of fatal acute myocardial infarction and sudden heart deaths. Conventional criterias for the diagnosis of "vulnerable plaques" are calcified nodules, yellow appearance of plaque, a thin cap, a large lipid core, severe luminal stenosis, intraplaque hemorrhage, inflammation, thrombogenicity, and plaque injury (3-5). Noninvasive diagnosis of vulnerable plaque still remains a great challenge and a huge research prospect, which triggered us to investigate the feasibility of PET imaging on the evaluation of atherosclerosis. Nuclear imaging of atherosclerosis, especially co-registered imaging modalities, could provide a promising diagnostic tool including both anatomy and activities to identify vulnerable atherosclerotic plaque or early detection of inflammatory endothelium at risk. Furthermore, the development of specific imaging tracers for clinical applications is also a challenging task. The aim of this work was to assess the potential of novel PET imaging probes associated with intra-plaque inflammation on animal models and in human respectively. Methods In this work, several molecular imaging modalities were employed for evaluation of atherosclerosis. They included Positron emission tomography / Computed tomography (PET/CT) for human studies, and micro-PET, autoradiography and high-resolution magnetic resonance imaging (MRI) for animal studies. Radiotracers for PET imaging included the glucose analogue 18F-Fluorodeoxyglucose (18F-FDG), the somatostatin receptor avide tracer 68Ga-DOTATATE, and the Gallium-68 labeled fucoidan (68Ga-Fucoidan), which was developed as a PET tracer to detect endothelial P-selectin, which overexpressed at early stage of atherosclerosis and endothelial overlying activated plaque. Tracer's capabilities were firstly assessed on cellular level in vitro. Subsequently, Animal studies were conducted in two animal models: 1, Apolipoprotein E (ApoE-/-) mice having severe atherosclerotic plaque; 2, Lipopolysaccharide (LPS) -induced mice for receiving acute vascular inflammation. Corresponding analyses on protein and histological level were conducted as well to confirm our results. In human study, 16 patients with neuroendocrine tumors (NETs) were investigated on imaging vascular inflammation. These patients had undergone both 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT for staging or restaging within 6 weeks. 16 patients were randomized into two groups: high-risk group and low-risk group. Uptake ratio of both tracers from two groups were compared and correlated with common cardiovascular risk factors. Results and Conclusion In murine study, the expression of somatostatin receptor 2, which is the main bio-target of 68Ga-DOTATATE on macrophage/monocyte was confirmed by flow cytometry and immunohistochemistry. Prospectively, high specific accumulation of 68Ga-DOTATATE to the macrophage within the plaques was observed in aorta lesions by autoradiography and by micro-PET. In study with 68Ga-fucoidan, a strong expression of P-selectin on active endothelium overlying on inflamed plaque but weaker on inactive plaques was confirmed. Specific focal uptake of 68Ga-fucoidan were detected at aorta segments by micro-PET, and correlated with high-resolution magnetic resonance imaging (MRI), which was used to characterize the morphology of plaques. 68Ga-fucoidan also showed a greater affinity to active inflamed plaque in comparison of inactive fibrous plaque, which was assessed by autoradiography. Specificity of 68Ga-DOTATATE and 68Ga-fucoidan were confirmed by ex-vivo blocking autoradiography and in vivo blocking PET imaging respectively. In human study, focal uptake of both 18F-FDG and 68Ga-DOTATATE was detected. Analyzing concordance of two tracers' uptake ratio, Out of the 37 sites with highest focal 68Ga-DOTATATE uptake, 16 (43.2\%) also had focal 18F-FDG uptake. Of 39 sites with highest 18F-FDG uptake, only 11 (28.2\%) had a colocalized 68Ga-DOTATATE accumulation. Correlated tracers' uptake and calcium burden and risk factors, Mean target-to-background ratio (TBR) of 68Ga-DOTATATE correlated significantly with the presence of calcified plaques (r=0.52), hypertension (r=0.60), age (r=0.56) and uptake of 18F-FDG (r=0.64). TBRmean of 18F-FDG correlated significantly only with hypertension (r=0.58; p<0.05). Additionally, TBRmean of 68Ga-DOTATATE is significant higher in the high risk group while TBRmean of 18F-FDG is not. In conclusion, we evaluated vascular inflammation of atherosclerosis non-invasively using the two PET tracers: 68Ga-DOTATATE and 68Ga-Fucoidan. 68Ga-DOTATATE show specific affinity to infiltrated macrophage within the plaques. 68Ga-Fucoidan may hold the potential to discriminate between active and inactive atherosclerotic plaques in terms of variant accumulation on different-types of plaques. PET as leading molecular imaging technique provides superiority in assessing cellular activity, which is pivotal for understanding internal activity of atherosclerotic plaques. Since diagnosis of atherosclerosis is a complex and multi-dimensional task. More integrated imaging technology such as PET/MRI, faster imaging algorithm, more efficient radiotracer are required for further development of atherosclerosis imaging,}, subject = {Arteriosklerose}, language = {en} } @phdthesis{Dreykluft2013, author = {Dreykluft, Angela}, title = {The PD-1/B7-H1 Pathway in a Transgenic Mouse Model for Spontaneous Autoimmune Neuroinflammation: Immunological Studies on Devic B7-H1-/- Mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83288}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Multiple sclerosis is an autoimmune disease of the central nervous system characterized by inflammatory, demyelinating lesions and neuronal death. Formerly regarded as a variant of MS, neuromyelitis optica (NMO)/Devic's disease is now recognized as a distinct neurological disorder exhibiting characteristic inflammatory and demyelinated foci in the optic nerves and the spinal cord sparing the brain. With the introduction of the double-transgenic "Devic mouse" model featuring spontaneous, adjuvant-free incidence of autoimmune neuroinflammation due to the interaction of transgenic MOG-specific T and B cells, a promising tool was found for the analysis of factors triggering or preventing autoimmunity. The co-inhibitory molecule B7-H1 has been proposed to contribute to the maintenance of peripheral tolerance and to confine autoimmune inflammatory damage via the PD-1/B7-H1 pathway. Compared to Devic B7-H1+/+ mice, Devic B7-H1-/- mice developed clinical symptoms with a remarkably higher incidence rate and faster kinetics emphasized by deteriorated disease courses and a nearly quadrupled mortality rate. Remarkably enlarged immune-cell accumulation in the CNS of Devic B7-H1-/- mice, in particular of activated MOG-specific CD4+ T cells, correlated with the more severe clinical features. Our studies showed that the CNS not only was the major site of myelin-specific CD4+ T-cell activation but also that B7-H1 expression within the target organ significantly influenced T-cell activation and differentiation levels. Analysis at disease maximum revealed augmented accumulation of MOG-specific CD4+ T cells in the peripheral lymphoid organs of Devic B7-H1-/- mice partly due to increased T-cell proliferation rates. Transgenic MOG-specific B cells of Devic B7-H1-/- mice activated MOG-specific CD4+ T cells more efficiently than B cells of Devic B7-H1+/+ mice. This observation indicated a relevant immune-modulating role of B7-H1 on APCs (antigen-presenting cells) in this mouse model. We also assumed altered thymic selection processes to be involved in increased peripheral CD4+ T-cell numbers of Devic B7-H1-/- mice as we found more thymocytes expressing the transgenic MOG-specific T-cell receptor (TCR). Moreover, preliminary in vitro experiments hinted on an enhanced survival of TCRMOG-transgenic CD4+ T cells of Devic B7-H1-/- mice; a mechanism that might as well have led to higher peripheral T-cell accumulation. Elevated levels of MOG-specific CD4+ T cells in the periphery of Devic B7-H1-/- mice could have entailed the higher quantities in the CNS. However, mechanisms such as CNS-specific proliferation and/or apoptosis/survival could also have contributed. This should be addressed in future investigations. Judging from in vitro migration assays and adoptive transfer experiments on RAG-1-/- recipient mice, migratory behavior of MOG-specific CD4+ T cells of Devic B7-H1+/+ and Devic B7-H1-/- mice seemed not to differ. However, enhanced expression of the transmigration-relevant integrin LFA-1 on CD4+ T cells in young symptom-free Devic B7-H1-/- mice might hint on temporally differently pronounced transmigration capacities during the disease course. Moreover, we attributed the earlier conversion of CD4+ T cells into Th1 effector cells in Devic B7-H1-/- mice during the initiation phase to the lack of co-inhibitory signaling via PD-1/B7-H1 possibly leading to an accelerated disease onset. Full blown autoimmune inflammatory processes could have masked these slight effects of B7-H1 in the clinical phase. Accordingly, at peak of the disease, Th1 and Th17 effector functions of peripheral CD4+ T cells were comparable in both mouse groups. Moreover, judging from titers of MOG-specific IgG1 and IgM antibodies, alterations in humoral immunity were not detected. Therefore, clinical differences could not be explained by altered T-cell or B-cell effector functions at disease maximum. B7-H1 rather seemed to take inhibitory effect in the periphery during the initiation phase only and consistently within the target organ by parenchymal expression. Our observations indicate that B7-H1 plays a relevant role in the regulation of T-cell responses in this mouse model for spontaneous CNS autoimmunity. By exerting immune-modulating effects in the preclinical as well as the clinical phase of the disease, B7-H1 contributed to the confinement of the immunopathological tissue damage in Devic B7-H1+/+ mice mirrored by later disease onsets and lower disease scores. As a model for spontaneous autoimmunity featuring a close to 100 \% incidence rate, the Devic B7-H1-/- mouse may prove instrumental in clarifying disease-triggering and -limiting factors and in validating novel therapeutic approaches in the field of autoimmune neuroinflammation, in particular the human Devic's disease.}, subject = {Autoimmunit{\"a}t}, language = {en} } @phdthesis{Groh2013, author = {Groh, Janos Michael}, title = {Pathogenic impact of immune cells in mouse models of neuronal ceroid lipofuscinosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77684}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The neuronal ceroid lipofuscinoses (NCLs) are fatal neurodegenerative disorders in which the visual system is affected in early stages of disease. A typical accompanying feature is neuroinflammation, the pathogenic impact of which is presently unknown. In this study, the role of inflammatory cells in the pathogenesis was investigated in Palmitoyl-protein thioesterase 1-deficient (Ppt1-/-) and Ceroidlipofuscinosis, neuronal 3-deficient (Cln3-/-) mice, models of the infantile and juvenile forms of NCL, respectively. Focusing predominantly on the visual system, an infiltration of CD8+ cytotoxic Tlymphocytes and an activation of microglia/macrophage-like cells was observed early in disease. To analyze the pathogenic impact of lymphocytes, Ppt1-/- mice were crossbred with mice lacking lymphocytes (Rag1-/-) and axonal transport, perturbation and neuronal survival were scored. Lack of lymphocytes led to a significant amelioration of neuronal disease and reconstitution experiments revealed a crucial role of CD8+ cytotoxic T-lymphocytes. Lack of lymphocytes also caused an improved clinical phenotype and extended longevity. To investigate the impact of microglia/macrophage-like cells, Ppt1-/- and Cln3-/- mice were crossbred with mice lacking sialoadhesin (Sn-/-), a monocyte lineage-restricted cell adhesion molecule important for interactions between macrophage-like cells and lymphocytes. Similar to the lack of lymphocytes, absence of sialoadhesin significantly ameliorated the disease in Ppt1-/- and Cln3-/- mice. Taken together, both T-lymphocytes and microglia/macrophage-like cells were identified as pathogenic mediators in two distinct forms of fatal inherited neurodegenerative storage disorders. These studies expand the concept of secondary inflammation as a common pathomechanistic feature in some neurological diseases and provide novel insights that may be crucial for developing treatment strategies for different forms of NCL.}, subject = {Nervendegeneration}, language = {en} } @phdthesis{Foertsch2012, author = {F{\"o}rtsch, Christina}, title = {Pneumolysin: the state of pore-formation in context to cell trafficking and inflammatory responses of astrocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70892}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Pneumolysin, a protein toxin, represents one of the major virulence factors of Streptococcus pneumoniae. This pathogen causes bacterial meningitis with especially high disease rates in young children, elderly people and immunosuppressed patients. The protein toxin belongs to the family of cholesterol-dependent cytolysins, which require membrane cholesterol in order to bind and to be activated. Upon activation, monomers assemble in a circle and undergo conformational change. This conformational change leads to the formation of a pore, which eventually leads to cell lysis. This knowledge was obtained by studies that used a higher concentration compared to the concentration of pneumolysin found in the cerebrospinal fluid of meningitis patients. Thus, a much lower concentration of pneumolysin was used in this work in order to investigate effects of this toxin on primary mouse astrocytes. Previously, a small GTPase activation, possibly leading to cytoskeletal changes, was found in a human neuroblastoma cell line. This led to the hypothesis that pneumolysin can lead to similar cytoskeletal changes in primary cells. The aim of this work was to investigate and characterise the effects of pneumolysin on primary mouse astrocytes in terms of a possible pore formation, cellular trafficking and immunological responses. Firstly, the importance of pore-formation on cytoskeletal changes was to be investigated. In order to tackle this question, wild-type pneumolysin and two mutant variants were used. One variant was generated by exchanging one amino acid in the cholesterol recognising region, the second variant was generated by deleting two amino acids in a protein domain that is essential for oligomerisation. These variants should be incapable of forming a pore and were compared to the wild-type in terms of lytic capacities, membrane binding, membrane depolarisation, pore-formation in artificial membranes (planar lipid bilayer) and effects on the cytoskeleton. These investigations resulted in the finding that the pore-formation is required for inducing cell lysis, membrane depolarisation and cytoskeletal changes in astrocytes. The variants were not able to form a pore in planar lipid bilayer and did not cause cell lysis and membrane depolarisation. However, they bound to the cell membrane to the same extent as the wild-type toxin. Thus, the pore-formation, but not the membrane binding was the cause for these changes. Secondly, the effect of pneumolysin on cellular trafficking was investigated. Here, the variants showed no effect, but the wild-type led to an increase in overall endocytotic events and was itself internalised into the cell. In order to characterise a possible mechanism for internalisation, a GFP-tagged version of pneumolysin was used. Several fluorescence-labelled markers for different endocytotic pathways were used in a co-staining approach with pneumolysin. Furthermore, inhibitors for two key-players in classical endocytotic pathways, dynamin and myosin II, were used in order to investigate classical endocytotic pathways and their possible involvement in toxin internalisation. The second finding of this work is that pneumolysin is taken up into the cell via dynamin- and caveolin-independent pinocytosis, which could transfer the toxin to caveosomes. From there, the fate of the toxin remains unknown. Additionally, pneumolysin leads to an overall increase in endocytotic events. This observation led to the third aim of this work. If the toxin increases the overall rate of endocytosis, the question arises whether toxin internalisation favours bacterial tissue penetration of the host or whether it serves as a defence mechanism of the cell in order to degrade the protein. Thus, several proinflammatory cytokines were investigated, as previous studies describe an effect of pneumolysin on cytokine production. Surprisingly, only interleukin 6-production was increased after toxin-treatment and no effect of endocytotic inhibitors on the interleukin 6-production was observed. The conclusion from this finding is that pneumolysin leads to an increase of interleukin 6, which would not depend on the endocytotic uptake of pneumolysin. The production of interleukin 6 would enhance the production of acute phase proteins, T-cell activation, growth and differentiation. On the one hand, this activation could serve pathogen clearance from infected tissue. On the other hand, the production of interleukin 6 could promote a further penetration of pathogen into host tissue. This question should be further investigated.}, subject = {Streptococcus pneumoniae}, language = {en} } @phdthesis{Schwab2009, author = {Schwab, Nicholas}, title = {The importance of CD8\(^+\) T cells and antigen-presenting cells in the immune reaction of primary inflammatory versus degenerative diseases}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37330}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {The bidirectional influence of parenchymal cells and cells of the immune system, especially of antigen-presenting and CD8\(^+\) T cells, in situations of putative auto- immune pathogenicity and degeneration was the main topic of this thesis. In the first part, the influence of human muscle cells on antigen-presenting cells was investigated. In inflammatory myopathies prominent infiltrates of immune cells containing T cells and antigen-presenting cells like macrophages and dendritic cells are present. The hypothesis was that human myoblasts have an inhibiting influence on these antigen-presenting cells under homeostatic conditions. A dysfunction or impairment under inflammatory circumstances might contribute to the development of myopathic conditions. The surface analysis of dendritic cells cocultured with myoblasts showed that immature dendritic cells could be driven into a reversible semi- mature state with significantly elevated levels of CD80. These dendritic cells were additionally characterized by their inhibiting function on T-cell proliferation. It was also shown that the lysates of healthy myoblasts could strongly enhance the phagocytic ability of macrophages, which could help with muscle regeneration and which might be disturbed in myositis patients. The second part of this thesis was about the clonal specificity of CD8\(^+\) T cells in a mouse model with genetically induced over-expression of PLP in oligodendrocytes. Here, we could show that the cytotoxic T lymphocytes, which had previously been shown to be pathogenic, were clonally expanded in the CNS of the transgenic mice. The amino acid sequences of the corresponding receptor chains were not identical, yet showed some similarities, which could mean that these clones recognize similar antigens (or epitopes of the same antigen). The knockout of PD-1 in this setting allowed for an analysis of the importance of tissue immune regulation. It became evident that the absence of PD-1 induced a larger number of clonal expansions in the CNS, hinting towards a reduced threshold for clonal disturbance and activation in these T cells. The expansions were, however, not pathogenic by themselves. Only in the presence of tissue damage and an antigenic stimulus (in our case the overexpression of PLP), the PD-1 limitation exacerbated the immune pathogenicity. Therefore, only in the presence of a "tissue damage signal", the dyshomeostasis of T cells lacking PD-1 achieved high pathogenetic relevance. Finally, we investigated the pathogenetic role of CD8 T cells in Rasmussen encephalitis, a rare and chronic neurological disease mainly affecting children. The analysis of the T-cell receptor repertoire in Rasmussen encephalitis patients in the peripheral CD4\(^+\) and CD8\(^+\) T-cell compartments as well as the brain revealed the involvement of T cells in the pathogenicity of this disease. Many clonal expansions in the brain matched CD8\(^+\) T-cell expansions in the periphery on the sequence level. These putatively pathogenic clones could be visualized by immunohistochemistry in the brain and were found in close proximity to astrocytes and neurons. Additionally, the expanded clones could be found in the periphery of patients for at least one year.}, subject = {T-Lymphozyt}, language = {en} }