@phdthesis{Soundararajan2020, author = {Soundararajan, Manonmani}, title = {Investigations into the mechanisms behind the antagonistic effects and phage resistance of probiotic Escherichia coli strain Nissle 1917}, doi = {10.25972/OPUS-21525}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215256}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Gastrointestinal infections account for high morbidity and mortality in humans every year across the globe. The increasing emergence of antibiotic resistance among the gastrointestinal pathogens and the induction of virulence factors by antibiotics makes it highly risky to only depend on antibiotic therapy for intestinal infections. Most of these infections are associated with an imbalance in the gut microbial population whereas the restoration of the balance with probiotic supplements can result in an improvement of the health condition. Probiotics are therefore considered as successful support in the treatment of gastrointestinal infections. E. coli Nissle 1917 (EcN) is the active component of the probiotic medication MutaflorĀ® and has been used in the treatment of various gastrointestinal disorders for more than 100 years. Several studies have reported antagonistic effects of EcN against enterohemorrhagic E. coli (EHEC) in vitro and in vivo. However, detailed investigations on the probiotic mechanisms and safety aspects of EcN are a pre-requisite, for administering EcN to treat EHEC infected patients or to use EcN as a prophylactic for the patient's close contacts. In this regard, the first part of the study aimed to understand the nature and behaviour of EcN in the presence of pathogenic or non-pathogenic E. coli strains. Transcriptomic analysis was deployed to this end. We investigated the changes in EcN's transcriptome after different time points of coculture with the EHEC strain EDL933 or the K-12 strain MG1655. The transcriptome data reported a strain-specific response in EcN at all the investigated time points (3 h, 5 h, 7 h and 8 h) of coincubation. The alterations in gene regulation of EcN were highly pronounced in initial timepoints (3 h and 5 h) of coincubation with EDL933, which gradually decreased over time. In the presence of MG1655, the alterations were strongly differentially regulated only at later time points (7 h and 8 h). The unique transcriptional response of EcN towards two different E. coli strains, that are genetically more than 98 \% identical, was startling. 12 More importantly, this can be considered as a beneficial trait of EcN over a chemical-pharmaceutical preparation like an antibiotic that might act identically on all target cells. Bacteriophages are one of the most abundant members of gut microbiota. On the one hand, the infection of a probiotic strain by a lysogenic phage could transfer genetic material coding for pathogenic factors or antibiotic resistance into an otherwise beneficial probiotic bacterium and thereby converting it into a virulent pathogenic bacterium. On the other hand, infection by a lytic phage could result in bacterial lysis and prevent the bacterium from exerting its probiotic effect. Thus, in order to successfully establish and colonise the gut, it is crucial for any probiotic to be resistant against phage infections. To address this, in the second part of the study, we investigated the phage resistance of EcN towards the lysogenic lambda and the lytic T4 phage. EcN showed complete resistance against tested phages and was also able to inactivate these phages upon coincubation. In the case of lambda phages, the resistance was attributed to the presence of a lambdoid prophage (prophage 3) in the genome of EcN. In addition, the overexpression of one of the early genes of EcN's prophage 3 (i.e. phage repressor gene pr) in the phage sensitive MG1655 conferred partial protection against lambda phage infection. Moreover, the inactivation was mediated by binding of lambda phages to its receptor LamB. Experiments with lytic T4 phages revealed that the EcN's K5 polysaccharide capsule was crucial for its T4 phage resistance, while its lipopolysaccharide (LPS) inactivated the T4 phages. Apart from protecting itself, EcN displayed even a protective role for the tested K-12 strains, by interfering with the lysogeny and lysis by these phages. In summary, this work highlights two novel positive traits of the probiotic strain EcN: i) the strain-specific response that was evident from the global transcriptome analysis of EcN when incubated with other E. coli strains, and ii) lytic and lysogenic phage resistance. Both these traits are additional safety aspects for a well-characterised probiotic strain and encourage its application in therapeutics.}, language = {en} } @phdthesis{Sienerth2010, author = {Sienerth, Arnold R.}, title = {Regulation of anti-inflammatory cytokine IL-10 by the Polycomb Group Protein Bmi1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49990}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Macrophages are important effector cells of the innate and adaptive immune response and exert a wide variety of immunological functions which necessitates a high level of plasticity on the chromatin level. In response to pathogen-associated molecular patterns (PAMPs) or inflammatory signals macrophages undergo a process of cellular activation which is associated with morphologic, functional and biochemical changes. Toll-like receptors (TLR) are able to sense many different PAMPs. TLR4 is an important sensor for lipopolysaccharide (LPS) which elicits a major portion of the host's inflammatory response through the activation of many different signaling pathways such as the NF-\&\#954;B and the MAPK protein kinase pathways RASRAF- MEK-ERK, p38 and JNK. Polycomb group (PcG) proteins are well known chromatin modifiers which function in large complexes and are required to maintain chromatin structure in a transcriptionally repressed state. It has previously been shown that the PcG protein Bmi1 is phosphorylated by 3pK, a downstream effector kinase of the MAPK protein kinase pathways RAS-RAF-MEK-ERK, p38 and JNK. In this work I analyzed the role of Bmi1 as a downstream effector of MAPK signaling during macrophage activation. Unexpectedly a rapid up-regulation on the Bmi1 protein level was observed in bone marrow derived macrophages (BMDMs) after LPS treatment. The Bmi1 induction was associated with transient protein phosphorylation that occured downstream of MAPK signaling. LPS treatment of BMDMs in the absence of Bmi1 resulted in a pronounced increase of IL-10 secretion. This secretion of the anti-inflammatory cytokine IL-10 was associated with increased IL-10 mRNA levels. Furthermore, siRNA mediated knock down of Bmi1 in J774A.1 macrophages also resulted in elevated IL-10 mRNA levels in response to LPS. ChIP analysis revealed that Bmi1 binds to throughout the il-10 locus. Alternative activation of wild type BMDMs via concomitant TLR4 and Fc\&\#947;R activation which triggers high IL-10 expression is paralleled by an attenuated Bmi1 protein expression. These results identify Bmi1 as a repressor of IL-10 expression during activation of macrophages.}, subject = {Interleukin 10}, language = {en} }