@phdthesis{Sippel2010, author = {Sippel, Martin}, title = {Computational Structure-based Design Approaches: Targeting HIV-1 Integrase and the Macrophage Infectivity Potentiator of Legionella pneumophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51247}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Die vorliegende Arbeit thematisiert das computergest{\"u}tzte strukturbasierte Design auf dem Gebiet der HIV-1-Integrase und des Macrophage Infectivity Potentiator (MIP) von Legionella pneumophila. Die durchgef{\"u}hrten Studien geben wertvolle Aufschl{\"u}sse {\"u}ber den Wirk-mechanismus einer bekannten Integrase-Inhibitorenklasse and zeigt dar{\"u}ber hinaus einen neuartigen Ansatz zur Integrase-Inhibition auf. Im Falle des MIP-Enzyms konnten zwei niedermolekulare Inhibitoren ermittelt werden. Die Integrase-Studien ergaben wertvolle Informationen im Hinblick auf das Design neuer Inhibitoren. Docking-Experimente konnten die Hypothese weiter untermauern, nach der die Klasse der Diketos{\"a}ure-Inhibitoren nicht als freie Liganden, sondern als Metallion-Komplexe an das aktive Zentrum der Integrase binden. Die Ergebnisse dieser Studie helfen dabei, das Verst{\"a}ndnis {\"u}ber den Wirkmechanismus dieser wichtigen Klasse von Integrase-Inhibitoren weiter zu vertiefen. Um der Entwicklung von Integrase-Inhibitoren einen neuen Impuls zu geben, wurde eine neue Strategie zur Inhibition dargelegt: Anstatt an das aktive Zentrum soll eine neue Inhibitor-Klasse an das Dimerisierungs-Interface eines Integrase-Monomers binden, die katalytisch notwendige Dimerisierung verhindern und somit die enzymatische Aktivit{\"a}t st{\"o}ren. Das Hauptproblem hierbei bestand in den fehlenden Strukturdaten des freien Monomers. Hierzu wurden Molekulardynamik-Simulationen durchgef{\"u}hrt, um n{\"a}here strukturelle Informationen zu erhalten. Momentaufnahmen unterschiedlicher Konformationen dienten als Input-Strukturen f{\"u}r eine Docking-Studie mit dem peptidischen Inhibitor YFLLKL, um dessen Bindemodus aufzukl{\"a}ren. Hierbei zeigte sich, dass dieser Ligand an eine Interface-Konformation bindet, die durch eine Y-f{\"o}rmige Bindestelle charakterisiert ist. Im n{\"a}chsten Schritt sollte diese Protein-Konformation mit kleinen, nicht-peptidischen Molek{\"u}len adressiert werden. Die erste Strategie bestand darin, ein Pharmakophor-Modell zu erstellen, das zur Suche nach Molek{\"u}len mit einer guten Komplementarit{\"a}t zur Y-f{\"o}rmigen Bindetasche geeignet ist. Das folgende virtuelle Screening ergab zehn Verbindungen, die eine gute Komplementarit{\"a}t und g{\"u}nstige hydrophobe Wechselwirkungen aufwiesen. Leider zeigte keine der Verbindungen eine reproduzierbare Aktivit{\"a}t im Integrase-Assay. Hierbei verbleiben jedoch gewisse Zweifel, da in dem Assay die Zugabe von BSA vorgeschrieben war, das m{\"o}glicherweise die hydrophoben Inhibitor-Kandidaten gebunden hat. Die erw{\"a}hnte erste Strategie wurde {\"u}berdacht: In einem zweiten Ansatz galt die Hauptaufmerksamkeit der Abs{\"a}ttigung von wasserstoffbr{\"u}ckenbildenden Resten. Diese waren zuvor von den eher hydrophoben Verbindungen nicht optimal abges{\"a}ttigt worden. Zwei Pharmakophor-Modelle wurden erstellt und in einem virtuellen Screening eingesetzt: Docking-Studien der Hits zeigten jedoch, dass nach wie vor viele wasserstoffbr{\"u}ckenbildende Reste des Proteins nicht vom Liganden abges{\"a}ttigt wurden. Nach abschließender eingehender Betrachtung der Bindemoden der verbliebenen Molek{\"u}le aus dem virtuellen Screening konnten nur acht f{\"u}r weitere Testungen ausgew{\"a}hlt werden (Ergebnisse der experimentellen Testung durch Kooperationspartner stehen noch aus). Diese geringe „Ausbeute" an geeigneten Verbindungen f{\"u}r das Integrase-Dimerisierungsinterface zeigt, wie schwer dieses Target zu adressieren ist: Das Interface weist eine schnell wechselnde Abfolge von basischen, sauren und hydrophoben Resten auf. Im Gegensatz zu anderen Protein-Protein-Interfaces zeigt das Integrase-Interface keine „aufger{\"a}umte" Bindetasche mit klar voneinander getrennten hydrophoben und hydrophilen Bereichen. F{\"u}r das zweite Enzym, MIP, konnten mit Hilfe des strukturbasierten Designs zwei niedermolekulare Inhibitoren gefunden werden. Beide Verbindungen f{\"u}hrten zu einer deutlichen Abnahme der katalytischen Aktivit{\"a}t. Soweit bekannt, sind bisher keinerlei niedermolekulare MIP-Inhibitoren ver{\"o}ffentlicht. Der Vergleich von MIP mit der humanen PPIase FKBP12 zeigte eine gr{\"o}ßtenteils {\"a}hnliche Tasche, die jedoch einen entscheidenden Unterschied aufweist, n{\"a}mlich in der Orientierung des Restes Tyr109. Die detaillierte Betrachtung der Strukturdaten beider Enzyme konnte schließlich eine Erkl{\"a}rung liefern, warum ein ketoacyl-substituiertes Pipecolinderivat nicht an MIP bindet, ein sulfonsubstituiertes Pipecolinderivat hingegen das Enzym inhibiert. Die Erkenntnisse {\"u}ber das Inhibitoren-Design f{\"u}r Legionella-MIP k{\"o}nnen auch auf andere Organismen (z.B. Trypanosomen) {\"u}bertragen werden, bei denen ebenfalls (homologes) MIP ein Pathogenit{\"a}tsfaktor ist.}, subject = {Legionella pneumophila}, language = {en} } @phdthesis{AlbertWeissenberger2009, author = {Albert-Weißenberger, Christiane}, title = {Regulation of the Flagellar Biogenesis in Legionella pneumophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34335}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {The bacterial pathogen Legionella pneumophila replicates intracellularly in protozoa, but can also cause severe pneumonia, called Legionnaires' disease. The bacteria invade and proliferate in the alveolar macrophages of the human lung. L. pneumophila bacteria exhibit a biphasic life cycle: replicative bacteria are avirulent; in contrast, transmissive bacteria express virulence traits and flagella. Primarily aim of this thesis was to evaluate the impact of the regulatory proteins FleQ, FleR, and RpoN in flagellar gene regulation. Phenotypic analysis, Western blot and electron microscopy of regulatory mutants in the genes coding for FleQ, RpoN and FleR demonstrated that flagellin expression is strongly repressed and that these mutants are non-flagellated in transmissive phase. Transcriptomic studies of these putative flagellar gene expression regulators demonstrated that fleQ controls the expression of numerous flagellar biosynthetic genes. Together with RpoN, FleQ controls transcription of 14 out of 31 flagellar class II genes, coding for the basal body, hook, and regulatory proteins. Unexpectedly, 7 out of 15 late flagellar genes class III and IV) are expressed dependent on FleQ but independent of RpoN. Thus, in contrast to the commonly accepted view that enhancer binding proteins as FleQ always interact with RpoN to initiate transcription, our results strongly indicate that FleQ of L. pneumophila regulates gene expression RpoN-dependent as well as RpoN-independent. Moreover, transcriptome analysis of a fleR mutant strain elucidated that FleR does not regulate the flagellar class III genes as previously suggested. Instead FleR regulates together with RpoN numerous protein biosynthesis and metabolic genes. Based on these experimental results our modified model for the transcriptional regulation of flagellar genes in L. pneumophila is that flagellar class II genes are controlled by FleQ and RpoN, while flagellar class III and IV genes are controlled in a fleQ-dependent but rpoN-independent manner. Although all L. pneumophila strains share the same complex life style, various pathotypes have evolved. This is reflected by the genomes, which contain e.g. genomic islands. The genomic island Trb-1 of L. pneumophila Corby, carries all genes necessary for a type-IV conjugation system, an integrase gene and a putative oriT site. The second aim of this thesis was to investigate the implication of this genomic island in conjugative DNA transfer. Using conjugation assays we showed that the oriT site located on Trb-1 is functional and contributes to conjugation between different L. pneumophila strains. As this is the first oriT site of L. pneumophila known to be functional our results provide evidence that conjugation is a major mechanism for the evolution of new pathotypes in L. pneumophila.}, subject = {Legionella pneumophila}, language = {en} }