@phdthesis{Kagerer2024, author = {Kagerer, Philipp Thomas}, title = {Two-Dimensional Ferromagnetism and Topology at the Surface of MnBi\(_2\)Te\(_4\) - Bi\(_2\)Te\(_3\) Heterostructures - MBE Growth, Magnetism and Electronic Properties}, doi = {10.25972/OPUS-36012}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360121}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {In this thesis, a model system of a magnetic topological heterostructure is studied, namely a heterosystem consisting of a single ferromagnetic septuple-layer (SL) of \(MnBi_2Te_4\) on the surface of the three-dimensional topological insulator \(Bi_2Te_3\). Using MBE and developing a specialized experimental setup, the first part of this thesis deals with the growth of \(Bi_2Te_3\) and thin films of \(MnBi_2Te_4\) on \(BaF_2\)-substrates by the co-evaporation of its binary constituents. The structural analysis is conducted along several suitable probes such as X-ray diffraction (XRD, XRR), AFM and scanning tunnelling electron microscopy (STEM). It is furthermore found that the growth of a single septuple-layer of \(MnBi_2Te_4\) on the surface of \(Bi_2Te_3\) can be facilitated. By using X-ray absorption and circular magnetic dichroism (XAS, XMCD), the magnetic properties of \(MnBi_2Te_4\) are explored down to the monolayer limit. The layered nature of the vdW crystal and a strong uniaxial magnetocrystalline anisotropy establish stable out-of plane magnetic order at the surface of \(MnBi_2Te_4\), which is stable even down to the 2D limit. Pushing the material system to there, i.e. a single SL \(MnBi_2Te_4\) further allows to study the phase transition of this 2D ferromagnet and extract its critical behaviour with \(T_c \, = \, 14.89~k\) and \(\beta \, = \, 0.484\). Utilizing bulk crystals of the ferromagnetic \(Fe_3GeTe_2\) as substrate allows to influence, enhance and bias the magnetism in the single SL of \(MnBi_2Te_4\). By growing heterostructures of the type \(MnBi_2Te_4\) -- n layer \(Bi_2Te_3\) -- \(Fe_3GeTe_2\)for n between 0 and 2, it is shown, that a considerable magnetic coupling can be introduced between the \(MnBi_2Te_4\) top-layer and the substrate. Finally the interplay between topology and magnetism in the ferromagnetic extension is studied directly by angle-resolved photoemission spectroscopy. The heterostructure is found to host a linearly dispersing TSS at the centre of the Brillouin zone. Using low temperature and high-resolution ARPES a large magnetic gap opening of \(\sim\) 35 meV is found at the Dirac point of the TSS. By following its temperature evolution, it is apparent that the scaling behaviour coincides with the magnetic order parameter of the modified surface.}, subject = {Molekularstrahlepitaxie}, language = {en} } @phdthesis{Scheffler2023, author = {Scheffler, Lukas}, title = {Molecular beam epitaxy of the half-Heusler antiferromagnet CuMnSb}, doi = {10.25972/OPUS-32283}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322839}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {This work presents a newly developed method for the epitaxial growth of the half-Heusler antiferromagnet CuMnSb. All necessary process steps, from buffer growth to the deposition of a protective layer, are presented in detail. Using structural, electrical, and magnetic characterization, the material parameters of the epitaxial CuMnSb layers are investigated. The successful growth of CuMnSb by molecular beam epitaxy is demonstrated on InAs (001), GaSb (001), and InP (001) substrates. While CuMnSb can be grown pseudomorphically on InAs and GaSb, the significant lattice mismatch for growth on InP leads to relaxation already at low film thicknesses. Due to the lower conductivity of GaSb compared to InAs, GaSb substrates are particularly suitable for the fabrication of CuMnSb layers for lateral electrical transport experiments. However, by growing a high-resistive ZnTe interlayer below the CuMnSb layer, lateral transport experiments on CuMnSb layers grown on InAs can also be realized. Protective layers of Ru and Al2O3 have proven to be suitable for protecting the CuMnSb layers from the environment. Structural characterization by high resolution X-ray diffraction (full width at half maximum of 7.7 ′′ of the rocking curve) and atomic force microscopy (root mean square surface roughness of 0.14 nm) reveals an outstanding crystal quality of the epitaxial CuMnSb layers. The half-Heusler crystal structure is confirmed by scanning transmission electron microscopy and the stoichiometric material composition by Rutherford backscattering spectrometry. In line with the high crystal quality, a new minimum value of the residual resistance of CuMnSb (𝜌0 = 35 μΩ ⋅ cm) could be measured utilizing basic electrical transport experiments. An elaborate study of epitaxial CuMnSb grown on GaSb reveals a dependence of the vertical lattice parameter on the Mn/Sb flux ratio. This characteristic enables the growth of tensile, unstrained, and compressive strained CuMnSb layers on a single substrate material. Additionally, it is shown that the N{\´e}el temperature has a maximum of 62 K at stoichiometric material composition and thus can be utilized as a selection tool for stoichiometric CuMnSb samples. Mn-related defects are believed to be the driving force for these observations. The magnetic characterization of the epitaxial CuMnSb films is performed by superconducting quantum interference device magnetometry. Magnetic behavior comparable to the bulk material is found, however, an additional complex magnetic phase appears in thin CuMnSb films and/or at low magnetic fields, which has not been previously reported for CuMnSb. This magnetic phase is believed to be localized at the CuMnSb surface and exhibits both superparamagnetic and spin-glass-like behavior. The exchange bias effect of CuMnSb is investigated in combination with different in- and out-of-plane ferromagnets. It is shown that the exchange bias effect can only be observed in combination with in-plane ferromagnets. Finally, the first attempts at the growth of fully epitaxial CuMnSb/NiMnSb heterostructures are presented. Both magnetic and structural studies by secondary-ion mass spectrometry indicate the interdiffusion of Cu and Ni atoms between the two half-Heusler layers, however, an exchange bias effect can be observed for the CuMnSb/NiMnSb heterostructures. Whether this exchange bias effect originates from exchange interaction between the CuMnSb and NiMnSb layers, or from ferromagnetic inclusions in the antiferromagnetic layer can not be conclusively identified.}, subject = {Molekularstrahlepitaxie}, language = {en} } @phdthesis{Winnerlein2020, author = {Winnerlein, Martin}, title = {Molecular Beam Epitaxy and Characterization of the Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\)}, doi = {10.25972/OPUS-21166}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211666}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The subject of this thesis is the fabrication and characterization of magnetic topological insulator layers of (V,Bi,Sb)\(_2\)Te\(_3\) exhibiting the quantum anomalous Hall effect. A major task was the experimental realization of the quantum anomalous Hall effect, which is only observed in layers with very specific structural, electronic and magnetic properties. These properties and their influence on the quantum anomalous Hall effect are analyzed in detail. First, the optimal conditions for the growth of pure Bi\(_2\)Te\(_3\) and Sb\(_2\)Te\(_3\) crystal layers and the resulting structural quality are studied. The crystalline quality of Bi\(_2\)Te\(_3\) improves significantly at higher growth temperatures resulting in a small mosaicity-tilt and reduced twinning defects. The optimal growth temperature is determined as 260\(^{\circ}\)C, low enough to avoid desorption while maintaining a high crystalline quality. The crystalline quality of Sb\(_2\)Te\(_3\) is less dependent on the growth temperature. Temperatures below 230\(^{\circ}\)C are necessary to avoid significant material desorption, though. Especially for the nucleation on Si(111)-H, a low sticking coefficient is observed preventing the coalescence of islands into a homogeneous layer. The influence of the substrate type, miscut and annealing sequence on the growth of Bi\(_2\)Te\(_3\) layers is investigated. The alignment of the layer changes depending on the miscut angle and annealing sequence: Typically, layer planes align parallel to the Si(111) planes. This can enhance the twin suppression due to transfer of the stacking order from the substrate to the layer at step edges, but results in a step bunched layer morphology. For specific substrate preparations, however, the layer planes are observed to align parallel to the surface plane. This alignment avoids displacement at the step edges, which would cause anti-phase domains. This results in narrow Bragg peaks in XRD rocking curve scans due to long-range order in the absence of anti-phase domains. Furthermore, the use of rough Fe:InP(111):B substrates leads to a strong reduction of twinning defects and a significantly reduced mosaicity-twist due to the smaller lattice mismatch. Next, the magnetically doped mixed compound V\(_z\)(Bi\(_{1-x}\)Sb\(_x\))\(_{2-z}\)Te\(_3\) is studied in order to realize the quantum anomalous Hall effect. The addition of V and Bi to Sb\(_2\)Te\(_3\) leads to efficient nucleation on the Si(111)-H surface and a closed, homogeneous layer. Magneto-transport measurements of layers reveal a finite anomalous Hall resistivity significantly below the von Klitzing constant. The observation of the quantum anomalous Hall effect requires the complete suppression of parasitic bulklike conduction due to defect induced carriers. This can be achieved by optimizing the thickness, composition and growth conditions of the layers. The growth temperature is observed to strongly influence the structural quality. Elevated temperatures result in bigger islands, improved crystallographic orientation and reduced twinning. On the other hand, desorption of primarily Sb is observed, affecting the thickness, composition and reproducibility of the layers. At 190\(^{\circ}\)C, desorption is avoided enabling precise control of layer thickness and composition of the quaternary compound while maintaining a high structural quality. It is especially important to optimize the Bi/Sb ratio in the (V,Bi,Sb)\(_2\)Te\(_3\) layers, since by alloying n-type Bi\(_2\)Te\(_3\) and p-type Sb\(_2\)Te\(_3\) charge neutrality is achieved at a specific mixing ratio. This is necessary to shift the Fermi level into the magnetic exchange gap and fully suppress the bulk conduction. The Sb content x furthermore influences the in-plane lattice constant a significantly. This is utilized to accurately determine x even for thin films below 10 nm thickness required for the quantum anomalous Hall effect. Furthermore, x strongly influences the surface morphology: with increasing x the island size decreases and the RMS roughness increases by up to a factor of 4 between x = 0 and x = 1. A series of samples with x varied between 0.56-0.95 is grown, while carefully maintaining a constant thickness of 9 nm and a doping concentration of 2 at.\% V. Magneto-transport measurements reveal the charge neutral point around x = 0.86 at 4.2 K. The maximum of the anomalous Hall resistivity of 0.44 h/e\(^2\) is observed at x = 0.77 close to charge neutrality. Reducing the measurement temperature to 50 mK significantly increases the anomalous Hall resistivity. Several samples in a narrow range of x between 0.76-0.79 show the quantum anomalous Hall effect with the Hall resistivity reaching the von Klitzing constant and a vanishing longitudinal resistivity. Having realized the quantum anomalous Hall effect as the first group in Europe, this breakthrough enabled us to study the electronic and magnetic properties of the samples in close collaborations with other groups. In collaboration with the Physikalisch-Technische Bundesanstalt high-precision measurements were conducted with detailed error analysis yielding a relative de- viation from the von Klitzing constant of (0.17 \(\pm\) 0.25) * 10\(^{-6}\). This is published as the smallest, most precise value at that time, proving the high quality of the provided samples. This result paves the way for the application of magnetic topological insulators as zero-field resistance standards. Non-local magneto-transport measurements were conducted at 15 mK in close collaboration with the transport group in EP3. The results prove that transport happens through chiral edge channels. The detailed analysis of small anomalies in transport measurements reveals instabilities in the magnetic phase even at 15 mK. Their time dependent nature indicates the presence of superparamagnetic contributions in the nominally ferromagnetic phase. Next, the influence of the capping layer and the substrate type on structural properties and the impact on the quantum anomalous Hall effect is investigated. To this end, a layer was grown on a semi-insulating Fe:InP(111)B substrate using the previously optimized growth conditions. The crystalline quality is improved significantly with the mosaicity twist reduced from 5.4\(^{\circ}\) to 1.0\(^{\circ}\). Furthermore, a layer without protective capping layer was grown on Si and studied after providing sufficient time for degradation. The uncapped layer on Si shows perfect quantization, while the layer on InP deviates by about 5\%. This may be caused by the higher crystalline quality, but variations in e.g. Sb content cannot be ruled out as the cause. Overall, the quantum anomalous Hall effect seems robust against changes in substrate and capping layer with only little deviations. Furthermore, the dependence of the quantum anomalous Hall effect on the thickness of the layers is investigated. Between 5-8 nm thickness the material typically transitions from a 2D topological insulator with hybridized top and bottom surface states to a 3D topological insulator. A set of samples with 6 nm, 8 nm, and 9 nm thickness exhibits the quantum anomalous Hall effect, while 5 nm and 15 nm thick layers show significant bulk contributions. The analysis of the longitudinal and Hall conductivity during the reversal of magnetization reveals distinct differences between different thicknesses. The 6 nm thick layer shows scaling consistent with the integer quantum Hall effect, while the 9 nm thick layer shows scaling expected for the topological surface states of a 3D topological insulator. The unique scaling of the 9 nm thick layer is of particular interest as it may be a result of axion electrodynamics in a 3D topological insulator. Subsequently, the influence of V doping on the structural and magnetic properties of the host material is studied systematically. Similarly to Bi alloying, increased V doping seems to flatten the layer surface significantly. With increasing V content, Te bonding partners are observed to increase simultaneously in a 2:3 ratio as expected for V incorporation on group-V sites. The linear contraction of the in-plane and out-of-plane lattice constants with increasing V doping is quantitatively consistent with the incorporation of V\(^{3+}\) ions, possibly mixed with V\(^{4+}\) ions, at the group-V sites. This is consistent with SQUID measurements showing a magnetization of 1.3 \(\mu_B\) per V ion. Finally, magnetically doped topological insulator heterostructures are fabricated and studied in magneto-transport. Trilayer heterostructures with a non-magnetic (Bi,Sb)\(_2\)Te\(_3\) layer sandwiched between two magnetically doped layers are predicted to host the axion insulator state if the two magnetic layers are decoupled and in antiparallel configuration. Magneto-transport measurements of such a trilayer heterostructure with 7 nm undoped (Bi,Sb)\(_2\)Te\(_3\) between 2 nm thick layers doped with 1.5 at.\% V exhibit a zero Hall plateau representing an insulating state. Similar results in the literature were interpreted as axion insulator state, but in the absence of a measurement showing the antiparallel magnetic orientation other explanations for the insulating state cannot be ruled out. Furthermore, heterostructures including a 2 nm thin, highly V doped layer region show an anomalous Hall effect of opposite sign compared to previous samples. A dependency on the thickness and position of the doped layer region is observed, which indicates that scattering at the interfaces causes contributions to the anomalous Hall effect of opposite sign compared to bulk scattering effects. Many interesting phenomena in quantum anomalous Hall insulators as well as axion insulators are still not unambiguously observed. This includes Majorana bound states in quantum anomalous Hall insulator/superconductor hybrid systems and the topological magneto-electric effect in axion insulators. The limited observation temperature of the quantum anomalous Hall effect of below 1 K could be increased in 3D topological insulator/magnetic insulator heterostructures which utilize the magnetic proximity effect. The main achievement of this thesis is the reproducible growth and characterization of (V,Bi,Sb)2Te3 layers exhibiting the quantum anomalous Hall effect. The detailed study of the structural requirements of the quantum anomalous Hall effect and the observation of the unique axionic scaling behavior in 3D magnetic topological insulator layers leads to a better understanding of the nature of this new quantum state. The high-precision measurements of the quantum anomalous Hall effect reporting the smallest deviation from the von Klitzing constant are an important step towards the realization of a zero-field quantum resistance standard.}, subject = {Bismutverbindungen}, language = {en} } @phdthesis{Schlereth2020, author = {Schlereth, Raimund}, title = {New techniques and improvements in the MBE growth of Hg-containing narrow gap semiconductors}, doi = {10.25972/OPUS-20079}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200790}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The subject of this thesis is the growth of Hg\(_{1-x}\)Cd\(_2\)Te layers via molecular beam epitaxy (MBE). This material system gives rise to a number of extraordinary physical phenomena related to its electronic band structure and therefore is of fundamental interest in research. The main results can be divided into three main areas, the implementation of a temperature measurement system based on band edge thermometry (BET), improvements of CdTe virtual substrate growth and the investigation of Hg\(_{1-x}\)Cd\(_2\)Te for different compositions.}, subject = {Halbleiter}, language = {en} } @phdthesis{Trabel2019, author = {Trabel, Mirko}, title = {Growth and Characterization of Epitaxial Manganese Silicide Thin Films}, doi = {10.25972/OPUS-18472}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184720}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {This thesis describes the growth and characterization of epitaxial MnSi thin films on Si substrates. The interest in this material system stems from the rich magnetic phase diagram resulting from the noncentrosymmetric B20 crystal structure. Here neighboring spins prefer a tilted relative arrangement in contrast to ferro- and antiferromagnets, which leads to a helical ground state where crystal and spin helix chirality are linked [IEM+85]. This link makes the characterization and control of the crystal chirality the main goal of this thesis. After a brief description of the material properties and applied methods, the thesis itself is divided into four main parts. In the first part the advancement of the MBE growth process of MnSi on Si\((111)\) substrate as well as the fundamental structural characterization are described. Here the improvement of the substrate interface by an adjusted substrate preparation process is demonstrated, which is the basis for well ordered flat MnSi layers. On this foundation the influence of Mn/Si flux ratio and substrate temperature on the MnSi layer growth is investigated via XRD and clear boundaries to identify the optimal growth conditions are determined. The nonstoichiometric phases outside of this optimal growth window are identified as HMS and Mn\(_5\)Si\(_3\). Additionally, a regime at high substrate temperatures and low Mn flux is discovered, where MnSi islands are growing incorporated in a Si layer, which could be interesting for further investigations as a size confinement can change the magnetic phase diagram [DBS+18]. XRD measurements demonstrate the homogeneity of the grown MnSi layers over most of the 3 inch wafer diameter and a small \(\omega\)-FWHM of about 0.02° demonstrates the high quality of the layers. XRD and TEM measurements also show that relaxation of the layers happens via misfit dislocations at the interface to the substrate. The second part of the thesis is concerned with the crystal chirality. Here azimuthal \(\phi\)-scans of asymmetric XRD reflections reveal twin domains with a \(\pm\)30° rotation to the substrate. These twin domains seem to consist of left and right-handed MnSi, which are connected by a mirror operation at the \((\bar{1}10)\) plane. For some of the asymmetric XRD reflections this results in different intensities for the different twin domains, which reveals that one of the domains is rotated +30° and the other is rotated -30°. From XRD and TEM measurements an equal volume fraction of both domains is deduced. Different mechanisms to suppress these twin domains are investigated and successfully achieved with the growth on chiral Si surfaces, namely Si\((321)\) and Si\((531)\). Azimuthal \(\phi\)-scans of asymmetric XRD reflections demonstrate a suppression of up to 92\%. The successful twin suppression is an important step in the use of MnSi for the proposed spintronics applications with skyrmions as information carriers, as discussed in the introduction. Because of this achievement, the third part of the thesis on the magnetic properties of the MnSi thin films is not only concerned with the principal behavior, but also with the difference between twinned and twin suppressed layers. Magnetometry measurements are used to demonstrate, that the MnSi layers behave principally as expected from the literature. The analysis of saturation and residual magnetization hints to the twin suppression on Si\((321)\) and Si\((531)\) substrates and further investigations with more samples can complete this picture. For comparable layers on Si\((111)\), Si\((321)\) and Si\((531)\) the Curie-Weiss temperature is identical within 1 K and the critical field within 0.1 T. Temperature dependent magnetoresistivity measurements also demonstrate the expected \(T^2\) behavior not only on Si\((111)\) but also on Si\((321)\) substrates. This demonstrates the successful growth of MnSi on Si\((321)\) and Si\((531)\) substrates. The latter measurements also reveal a residual resistivity of less then half for MnSi on Si\((321)\) in comparison to Si\((111)\). This can be explained with the reduced number of domain boundaries demonstrating the successful suppression of one of the twin domains. The homogeneity of the residual resistivity as well as the charge carrier density over a wide area of the Si\((111)\) wafer is also demonstrated with these measurements as well as Hall effect measurements. The fourth part shows the AMR and PHE of MnSi depending on the angle between in plane current and magnetic field direction with respect to the crystal direction. This was proposed as a tool to identify skyrmions [YKT+15]. The influence of the higher C\(_{3\mathrm{v}}\) symmetry of the twinned system instead of the C\(_3\) symmetry of a B20 single crystal is demonstrated. The difference could serve as a useful additional tool to prove the twin suppression on the chiral substrates. But this is only possible for rotations with specific symmetry surfaces and not for the studied unsymmetrical Si\((321)\) surface. Measurements for MnSi layers on Si\((111)\) above the critical magnetic field demonstrate the attenuation of AMR and PHE parameters for increasing resistivity, as expected from literature [WC67]. Even if a direct comparison to the parameters on Si\((321)\) is not possible, the higher values of the parameters on Si\((321)\) can be explained considering the reduced charge carrier scattering from domain boundaries. Below the critical magnetic field, which would be the region where a skyrmion lattice could be expected, magnetic hysteresis complicates the analysis. Only one phase transition at the critical magnetic field can be clearly observed, which leaves the existence of a skyrmion lattice in thin epitaxial MnSi layers open. The best method to solve this question seems to be a more direct approach in the form of Lorentz-TEM, which was also successfully used to visualize the skyrmion lattice for thin plates of bulk MnSi [TYY+12]. For the detection of in plane skyrmions, lamellas would have to be prepared for a side view, which seems in principle possible. The demonstrated successful twin suppression for MnSi on Si\((321)\) and Si\((531)\) substrates may also be applied to other material systems. Suppressing the twinning in FeGe on Si\((111)\) would lead to a single chirality skyrmion lattice near room temperature [HC12]. This could bring the application of skyrmions as information carriers in spintronics within reach. Glossary: MBE Molecular Beam Epitaxy XRD X-Ray Diffraction HMS Higher Manganese Silicide FWHM Full Width Half Maximum TEM Tunneling Electron Microscopy AMR Anisotropic MagnetoResistance PHE Planar Hall Effect Bibliography: [IEM+85] M. Ishida, Y. Endoh, S. Mitsuda, Y. Ishikawa, and M. Tanaka. Crystal Chirality and Helicity of the Helical Spin Density Wave in MnSi. II. Polarized Neutron Diffraction. Journal of the Physical Society of Japan, 54(8):2975, 1985. [DBS+18] B. Das, B. Balasubramanian, R. Skomski, P. Mukherjee, S. R. Valloppilly, G. C. Hadjipanayis, and D. J. Sellmyer. Effect of size confinement on skyrmionic properties of MnSi nanomagnets. Nanoscale, 10(20):9504, 2018. [YKT+15] T. Yokouchi, N. Kanazawa, A. Tsukazaki, Y. Kozuka, A. Kikkawa, Y. Taguchi, M. Kawasaki, M. Ichikawa, F. Kagawa, and Y. Tokura. Formation of In-plane Skyrmions in Epitaxial MnSi Thin Films as Revealed by Planar Hall Effect. Journal of the Physical Society of Japan, 84(10):104708, 2015. [WC67] R. H. Walden and R. F. Cotellessa. Magnetoresistance of Nickel-Copper Single-Crystal Thin Films. Journal of Applied Physics, 38(3):1335, 1967. [TYY+12] A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura. Real-Space Observation of Skyrmion Lattice in Helimagnet MnSi Thin Samples. Nano Letters, 12(3):1673, 2012. [HC12] S. X. Huang and C. L. Chien. Extended Skyrmion Phase in Epitaxial FeGe(111) Thin Films. Physical Review Letters, 108(26):267201, 2012.}, subject = {Molekularstrahlepitaxie}, language = {en} } @phdthesis{Leubner2017, author = {Leubner, Philipp}, title = {Strain-engineering of the Topological Insulator HgTe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152446}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The subject of this thesis is the control of strain in HgTe thin-film crystals. Such systems are members of the new class of topological insulator materials and therefore of special research interest. A major task was the experimental control of the strain in the HgTe films. This was achieved by a new epitaxial approach and confirmed by cristallographic analysis and magneto-transport measurements. In this work, strain was induced in thin films by means of coherent epitaxy on substrate crystals. This means that the film adopts the lattice constant of the substrate in the plane of the substrate-epilayer interface. The level of strain is determined by the difference between the strain-free lattice constants of the substrate and epilayer material (the so-called lattice mismatch). The film responds to an in-plane strain with a change of its lattice constant perpendicular to the interface. This relationship is crucial for both the correct interpretation of high resolution X-ray diffraction (HRXRD) measurements, and the precise determination of the band dispersion. The lattice constant of HgTe is smaller than the lattice constant of CdTe. Therefore, strain in HgTe is tensile if it is grown on a CdTe substrate. In principle, compressive strain can be achieved by using an appropriate \(\text{Cd}_{1-x}\text{Zn}_{x}\text{Te}\) substrate. This concept was modified and applied in this work. Epilayers have been fabricated by molecular-beam epitaxy (MBE). The growth of thick buffer layers of CdTe on GaAs:Si was established as an alternative to commercial CdTe and \(text{Cd}_{0.96}\text{Zn}_{0.04}\text{Te}\) substrates. The growth conditions have been optimized by an analysis of atomic force microscopy and HRXRD studies. HRXRD measurements reveal a power-law increase of the crystal quality with increasing thickness. Residual strain was found in the buffer layers, and was attributed to a combination of finite layer thickness and mismatch of the thermal expansion coefficients of CdTe and GaAs. In order to control the strain in HgTe epilayers, we have developed a new type of substrate with freely adjustable lattice constant. CdTe-\(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\) strained-layer-superlattices have been grown by a combination of MBE and atomic-layer epitaxy (ALE), and have been analyzed by HRXRD. ALE of the \(\text{Cd}_{0.5}\text{Zn}_{0.5}\text{Te}\) layer is self-limiting to one monolayer, and the effective lattice constant can be controlled reproducibly and straightforward by adjusting the CdTe layer thickness. The crystal quality has been found to degrade with increasing Zn-fraction. However, the effect is less drastic compared to single layer \(\text{Cd}_{1-x}\text{Zn}_{x}\text{Te}\) solid solutions. HgTe quantum wells (QWs) sandwiched in between CdHgTe barriers have been fabricated in a similar fashion on superlattices and conventional CdTe and \(\text{Cd}_{0.96}\text{Zn}_{0.04}\text{Te}\) substrates. The lower critical thickness of the CdHgTe barrier material grown on superlattice substrates had to be considered regarding the sample design. The electronic properties of the QWs depend on the strain and thickness of the QW. We have determined the QW thickness with an accuracy of \(\pm\)0.5 nm by an analysis of the beating patterns in the thickness fringes of HRXRD measurements and X-ray reflectometry measurements. We have, for the first time, induced compressive strain in HgTe QWs by an epitaxial technique (i.e. the effective lattice constant of the superlattice is lower compared to the lattice constant of HgTe). The problem of the lattice mismatch between superlattice and barriers has been circumvented by using CdHgTe-ZnHgTe superlattices instead of CdHgTe as a barrier material. Furthermore, the growth of compressively strained HgTe bulk layers (with a thickness of at least 50 nm) was demonstrated as well. The control of the state of strain adds a new degree of freedom to the design of HgTe epilayers, which has a major influence on the band structure of QWs and bulk layers. Strain in bulk layers lifts the degeneracy of the \(\Gamma_8\) bands at \(\mathbf{k}=0\). Tensile strain opens an energy gap, compressive strain shifts the touching points of the valence- and conduction band to positions in the Brillouin zone with finite \(\mathbf{k}\). Such a situation has been realized for the first time in the course of this work. For QWs in the inverted regime, it is demonstrated that compressive strain can be used to significantly enhance the thermal energy gap of the two-dimensional electron gas (2DEG). In addition, semi-metallic and semiconducting behavior is expected in wide QWs, depending on the state of strain. An examination of the temperature dependence of the subband ordering in QWs revealed that the band gap is only temperature-stable for appropriate sample parameters and temperature regimes. The band inversion is always lifted for sufficiently high temperatures. A large number of models investigate the influence of the band gap on the stability of the quantum-spin-Hall (QSH) effect. An enhancement of the stability of QSH edge state conductance is expected for enlarged band gaps. Furthermore, experimental studies on the temperature dependence of the QSH conductance are in contradiction to theoretical predictions. Systematic studies of these aspects have become feasible based on the new flexibility of the sample design. Detailed low-temperature magnetotransport studies have been carried out on QWs and bulk layers. For this purpose, devices have been fabricated lithographically, which consist of two Hall-bar geometries with different dimensions. This allows to discriminate between conductance at the plane of the 2DEG and the edge of the sample. The Fermi energy in the 2DEG has been adjusted by means of a top gate electrode. The strain-induced transition from semi-metallic to semiconducting characteristics in wide QWs was shown. The magnitude of the semi-metallic overlap of valence- and conduction band was determined by an analysis of the two-carrier conductance and is in agreement with band structure calculations. The band gap of the semiconducting sample was determined by measurements of the temperature dependence of the conductance at the charge-neutrality point. Agreement with the value expected from theory has been achieved for the first time in this work. The influence of the band gap on the stability of QSH edge state conductance has been investigated on a set of six samples. The band gap of the set spans a range of 10 to 55 meV. The latter value has been achieved in a highly compressively strained QW, has been confirmed by temperature-dependent conductance measurements, and is the highest ever reported in the inverted regime. Studies of the carrier mobility reveal a degradation of the sample quality with increasing Zn-fraction in the superlattice, in agreement with HRXRD observations. The enhanced band gap does not suppress scattering mechanisms in QSH edge channels, but lowers the conductance in the plane of the 2DEG. Hence, edge state conductance is the dominant conducting process even at elevated temperatures. An increase in conductance with increasing temperature has been found, in agreement with reports from other groups. The increase follows a power-law dependency, the underlying physical mechanism remains open. A cause for the lack of an increase of the QSH edge state conductance with increasing energy gap has been discussed. Possibly, the sample remains insulating even at finite carrier densities, due to localization effects. The measurement does not probe the QSH edge state conductance at the situation where the Fermi energy is located in the center of the energy gap, but in the regime of maximized puddle-driven scattering. In a first set of measurements, it has been shown that the QSH edge state conductance can be influenced by hysteretic charging effects of trapped states in the insulating dielectric. A maximized conductance of \(1.6\ \text{e}^2/\text{h}\) was obtained in a \(58\ \mu\text{m}\) edge channel. Finally, measurements on three dimensional samples have been discussed. Recent theoretical works assign compressively strained HgTe bulk layers to the Weyl semi-metal class of materials. Such layers have been synthesized and studied in magnetotransport experiments for the first time. Pronounced quantum-Hall- and Shubnikov-de-Haas features in the Hall- and longitudinal resistance indicate two-dimensional conductance on the sample surface. However, this conductance cannot be assigned definitely to Weyl surface states, due to the inversion of \(\Gamma_6\) and \(\Gamma_8\) bands. If a magnetic field is aligned parallel to the current in the device, a decrease in the longitudinal resistance is observed with increasing magnetic field. This is a signature of the chiral anomaly, which is expected in Weyl semi-metals.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Ames2015, author = {Ames, Christopher}, title = {Molecular Beam Epitaxy of 2D and 3D HgTe, a Topological Insulator}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In the present thesis the MBE growth and sample characterization of HgTe structures is investigated and discussed. Due to the first experimental discovery of the quantum Spin Hall effect (QSHE) in HgTe quantum wells, this material system attains a huge interest in the spintronics society. Because of the long history of growing Hg-based heterostructures here at the Experimentelle Physik III in W{\"u}rzburg, there are very good requirements to analyze this material system more precisely and in new directions. Since in former days only doped HgTe quantum wells were grown, this thesis deals with the MBE growth in the (001) direction of undoped HgTe quantum wells, surface located quantum wells and three dimensional bulk layers. All Hg-based layers were grown on CdTe substrates which generate strain in the layer stack and provide therefore new physical effects. In the same time, the (001) CdTe growth was investigated on n-doped (001) GaAs:Si because the Japanese supplier of CdTe substrates had a supply bottleneck due to the Tohoku earthquake and its aftermath in 2011. After a short introduction of the material system, the experimental techniques were demonstrated and explained explicitly. After that, the experimental part of this thesis is displayed. So, the investigation of the (001) CdTe growth on (001) GaAs:Si is discussed in chapter 4. Firstly, the surface preparation of GaAs:Si by oxide desorption is explored and analyzed. Here, rapid thermal desorption of the GaAs oxide with following cool down in Zn atmosphere provides the best results for the CdTe due to small holes at the surface, while e.g. an atomic flat GaAs buffer deteriorates the CdTe growth quality. The following ZnTe layer supplies the (001) growth direction of the CdTe and exhibits best end results of the CdTe for 30 seconds growth time at a flux ratio of Zn/Te ~ 1/1.2. Without this ZnTe layer, CdTe will grow in the (111) direction. However, the main investigation is here the optimization of the MBE growth of CdTe. The substrate temperature, Cd/Te flux ratio and the growth time has to be adjusted systematically. Therefore, a complex growth process is developed and established. This optimized CdTe growth process results in a RMS roughness of around 2.5 nm and a FWHM value of the HRXRD w-scan of 150 arcsec. Compared to the literature, there is no lower FWHM value traceable for this growth direction. Furthermore, etch pit density measurements show that the surface crystallinity is matchable with the commercial CdTe substrates (around 1x10^4 cm^(-2)). However, this whole process is not completely perfect and offers still room for improvements. The growth of undoped HgTe quantum wells was also a new direction in research in contrast to the previous n-doped grown HgTe quantum wells. Here in chapter 5, the goal of very low carrier densities was achieved and therefore it is now possible to do transport experiments in the n - and p - region by tuning the gate voltage. To achieve this high sample quality, very precise growth of symmetric HgTe QWs and their HRXRD characterization is examined. Here, the quantum well thickness can now determined accurate to under 0.3 nm. Furthermore, the transport analysis of different quantum well thicknesses shows that the carrier density and mobility increase with rising HgTe layer thickness. However, it is found out that the band gap of the HgTe QW closes indirectly at a thickness of 11.6 nm. This is caused by the tensile strained growth on CdTe substrates. Moreover, surface quantum wells are studied. These quantum wells exhibit no or a very thin HgCdTe cap. Though, oxidization and contamination of the surface reduces here the carrier mobility immensely and a HgCdTe layer of around 5 nm provides the pleasing results for transport experiments with superconductors connected to the topological insulator [119]. A completely new achievement is the realization of MBE growth of HgTe quantum wells on CdTe/GaAs:Si substrates. This is attended by the optimization of the CdTe growth on GaAs:Si. It exposes that HgTe quantum wells grown in-situ on optimized CdTe/GaAs:Si show very nice transport data with clear Hall plateaus, SdH oscillations, low carrier densities and carrier mobilities up to 500 000 cm^2/Vs. Furthermore, a new oxide etching process is developed and analyzed which should serve as an alternative to the standard HCl process which generates volcano defects at some time. However, during the testing time the result does not differ in Nomarski, HRXRD, AFM and transport measurements. Here, long-time tests or etching and mounting in nitrogen atmosphere may provide new elaborate results. The main focus of this thesis is on the MBE growth and standard characterization of HgTe bulk layers and is discussed in chapter 6. Due to the tensile strained growth on lattice mismatched CdTe, HgTe bulk opens up a band gap of around 22 meV at the G-point and exhibits therefore its topological surface states. The analysis of surface condition, roughness, crystalline quality, carrier density and mobility via Nomarski, AFM, XPS, HRXRD and transport measurements is therefore included in this work. Layer thickness dependence of carrier density and mobility is identified for bulk layer grown directly on CdTe substrates. So, there is no clear correlation visible between HgTe layer thickness and carrier density or mobility. So, the carrier density is almost constant around 1x10^11 cm^(-2) at 0 V gate voltage. The carrier mobility of these bulk samples however scatters between 5 000 and 60 000 cm^2/Vs almost randomly. Further experiments should be made for a clearer understanding and therefore the avoidance of unusable bad samples.But, other topological insulator materials show much higher carrier densities and lower mobility values. For example, Bi2Se3 exhibits just density values around 1019 cm^(-2) and mobility values clearly below 5000 cm2/Vs. The carrier density however depends much on lithography and surface treatment after growth. Furthermore, the relaxation behavior and critical thickness of HgTe grown on CdTe is determined and is in very good agreement with theoretical prediction (d_c = 155 nm). The embedding of the HgTe bulk layer between HgCdTe layers created a further huge improvement. Similar to the quantum well structures the carrier mobility increases immensely while the carrier density levels at around 1x10^11 cm^(-2) at 0 V gate voltage as well. Additionally, the relaxation behavior and critical thickness of these barrier layers has to be determined. HgCdTe grown on commercial CdTe shows a behavior as predicted except the critical thickness which is slightly higher than expected (d_c = 850 nm). Otherwise, the relaxation of HgCdTe grown on CdTe/GaAs:Si occurs in two parts. The layer is fully strained up to 250 nm. Between 250 nm and 725 nm the HgCdTe film starts to relax randomly up to 10 \%. The relaxation behavior for thicknesses larger than 725 nm occurs than linearly to the inverse layer thickness. A explanation is given due to rough interface conditions and crystalline defects of the CdTe/GaAs:Si compared to the commercial CdTe substrate. HRXRD and AFM data support this statement. Another point is that the HgCdTe barriers protect the active HgTe layer and because of the high carrier mobilities the Hall measurements provide new transport data which have to be interpreted more in detail in the future. In addition, HgTe bulk samples show very interesting transport data by gating the sample from the top and the back. It is now possible to manipulate the carrier densities of the top and bottom surface states almost separately. The back gate consisting of the n-doped GaAs substrate and the thick insulating CdTe buffer can tune the carrier density for Delta(n) ~ 3x10^11 cm^(-2). This is sufficient to tune the Fermi energy from the p-type into the n-type region [138]. In this thesis it is shown that strained HgTe bulk layers exhibit superior transport data by embedding between HgCdTe barrier layers. The n-doped GaAs can here serve as a back gate. Furthermore, MBE growth of high crystalline, undoped HgTe quantum wells shows also new and extended transport output. Finally, it is notable that due to the investigated CdTe growth on GaAs the Hg-based heterostructure MBE growth is partially independent from commercial suppliers.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Schreyeck2016, author = {Schreyeck, Steffen}, title = {Molecular Beam Epitaxy and Characterization of Bi-Based V\(_2\)VI\(_3\) Topological Insulators}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145812}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The present thesis is addressed to the growth and characterization of Bi-based V2VI3 topological insulators (TIs). The TIs were grown by molecular beam epitaxy (MBE) on differently passivated Si(111) substrates, as well as InP(111) substrates. This allows the study of the influence of the substrate on the structural and electrical properties of the TIs. The Bi2Se3 layers show a change of mosaicity-tilt and -twist for growth on the differently prepared Si(111) substrates, as well as a significant increase of crystalline quality for growth on the lateral nearly lattice matched InP(111). The rocking curve FWHMs observed for thick layers grown on InP are comparable to these of common zincblende layers, which are close to the resolution limit of standard high resolution X-ray diffraction (HRXRD) setups. The unexpected high structural crystalline quality achieved in this material system is remarkable due to the presence of weak van der Waals bonds between every block of five atomic layers, i.e. a quintuple layer (QL), in growth direction. In addition to the mosaicity also twin domains, present in films of the V2VI3 material system, are studied. The twin defects are observed in Bi2Se3 layers grown on Si(111) and lattice matched InP(111) suggesting that the two dimensional surface lattice of the substrates can not determine the stacking order ABCABC... or ACBACB... in locally separated growth seeds. Therefore the growth on misoriented and rough InP(111) is analyzed. The rough InP(111) with its facets within a hollow exceeding the height of a QL is able to provide its stacking information to the five atomic layers within a QL. By varying the roughness of the InP substrate surface, due to thermal annealing, the influence on the twinning within the layer is confirmed resulting in a complete suppression of twin domains on rough InP(111). Focusing on the electrical properties of the Bi2Se3 films, the increased structural quality for films grown on lattice matched flat InP(111)B results in a marginal reduction of carrier density by about 10\% compared to the layers grown on H-passivated Si(111), whereas the suppression of twin domains for growth on rough InP(111)B resulted in a reduction of carrier density by an order of magnitude. This implies, that the twin domains are a main crystal defect responsible for the high carrier density in the presented Bi2Se3 thin films. Besides the binary Bi2Se3 also alloys with Sb and Te are fabricated to examine the influence of the compound specific point defects on the carrier density. Therefore growth series of the ternary materials Bi2Te(3-y)Se(y), Bi(2-x)Sb(x)Se3, and Bi(2-x)Sb(x)Te3, as well as the quaternary Bi(2-x)Sb(x)Te(3-y)Se(y) are studied. To further reduce the carrier density of twin free Bi2Se3 layers grown on InP(111)B:Fe a series of Bi(2-x)Sb(x)Se3 alloys were grown under comparable growth conditions. This results in a reduction of the carrier density with a minimum in the composition range of about x=0.9-1.0. The Bi(2-x)Sb(x)Te3 alloys exhibit a pn-transition, due to the dominating n-type and p-type point defects in its binary compounds, which is determined to reduce the bulk carrier density enabling the study the TI surface states. This pn-transition plays a significant role in realizing predicted applications and exotic effects, such as the quantum anomalous Hall effect. The magnetic doping of topological insulators with transition metals is studied by incorporating Cr and V in the alloy Bi(2-x)Sb(x)Te3 by codeposition. The preferential incorporation of Cr on group-V sites is confirmed by EDX and XRD, whereas the incorporation of Cr reduces the crystalline quality of the layer. Magnetotransport measurements of the Cr-doped TIs display an anomalous Hall effect confirming the realization of a magnetic TI thin film. The quantum anomalous Hall effect is observed in V-doped Bi(2-x)Sb(x)Te3, where the V-doping results in higher Curie temperatures, as well as higher coercive fields compared to the Cr-doping of the TIs. Moreover the present thesis contributes to the understanding of the role of the substrate concerning the crystalline quality of van der Waals bonded layers, such as the V2VI3 TIs, MoS2 and WoTe2. Furthermore, the fabrication of the thin film TIs Bi(2-x)Sb(x)Te(3-y)Se(y) in high crystalline quality serves as basis to explore the physics of topological insulators.}, subject = {Bismutverbindungen}, language = {en} } @phdthesis{Pfeuffer2016, author = {Pfeuffer, Rebekka Christina}, title = {Growth and characterization of II-VI semiconductor nanowires grown by Au catalyst assisted molecular beam epitaxy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141385}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In the present PhD thesis the control of the morphology, such as the diameter, the length, the orientation, the density, and the crystalline quality of 1D ZnSe NWs grown by MBE for optical and transport applications has been achieved.}, subject = {Zinkselenid}, language = {en} } @phdthesis{Gerhard2014, author = {Gerhard, Felicitas Irene Veronika}, title = {Controlling structural and magnetic properties of epitaxial NiMnSb for application in spin torque devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111690}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {This thesis describes the epitaxial growth of the Half-Heusler alloy NiMnSb by molecular beam epitaxy. Its structural and magnetic properties are controlled by tuning the composition and the resulting small deviation from stoichiometry. The magnetic in-plane anisotropy depends on the Mn concentration of the sample and can be controlled in both strength and orientation. This control of the magnetic anisotropy allows for growing NiMnSb layers of a given thickness and magnetic properties as requested for the design of NiMnSb-based devices. The growth and characterization of NiMnSb-ZnTe-NiMnSb heterostructures is presented - such heterostructures form an all-NiMnSb based spin-valve and are a promising basis for spin torque devices.}, subject = {Nickelverbindungen}, language = {en} } @phdthesis{Ebel2013, author = {Ebel, Lars Frederik}, title = {Molecular Beam Epitaxy and Characterization of Ferromagnetic Bulk and Thin (Ga,Mn)As Layers/Heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83942}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die vorgelegte Arbeit untersucht den ferromagnetischen Halbleiter (Ga,Mn)As mit seinen komplexen Eigenschaften im Hinblick auf die Optimierung der Materialeigenschaften sehr d{\"u}nner (4 nm) (Ga,Mn)As Schichten, welche mit der Technologie der Molekularstrahlepitaxie (MBE) hergestellt wurden. Zuerst werden die strukturellen, ferromagnetischen und elektrischen Eigenschaften von (Ga,Mn)As vorgestellt. Die Einfl{\"u}sse von Punktdefekten, Grenzfl{\"a}chen- und Oberfl{\"a}chen-Effekten auf dicke und d{\"u}nne (Ga,Mn)As Schichten werden mit Hilfe von vereinfachten, selbstkonsistenten Berechnungen der Bandkantenverl{\"a}ufe diskutiert. Der Experimental-Teil ist in drei Teile unterteilt: Der erste Teil untersucht den Einfluss der epitaktischen Wachstumsbedingungen auf die elektrischen und magnetischen Eigenschaften von dicken (70 nm) (Ga,Mn)As Schichten. Der zweite Teil f{\"u}hrt ein alternatives, parabolisches Mn-Dotierprofil mit effektiver Schichtdicke von 4 nm ein im Vergleich zu einer gleich d{\"u}nnen Schicht mit homogenem Mn-Dotierprofil. Es konnten einerseits verbesserte Eigenschaften dieser parabolischen Schicht erreicht werden, anderseits sind die magnetischen und elektrischen Eigenschaften vergleichbar zu dicken (Ga,Mn)As Schichten mit gleichem Mn-Gehalt von 4\%. MBE Wachstumsbedingungen f{\"u}r (Ga,Mn)As Schichten mit parabolischem Mn-Dotierprofil und verringertem nominellem Mn-Gehalt von 2.5\% wurden ebenfalls untersucht. Ein schmales Wachstumsfenster wurde hierbei ermittelt, in dem die Tieftemperatur-Eigenschaften verbessert sind. Der letzte Teil der Arbeit pr{\"a}sentiert eine Anwendung der magnetischen Anisotropiekontrolle einer dicken (Ga,Mn)As Schicht.}, subject = {Molekularstrahlepitaxie}, language = {en} } @phdthesis{Pohl2013, author = {Pohl, Christoph}, title = {Silicon Based MBE of Manganese-Silicide and Silicon-Suboxide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The present thesis deals with the fabrication, optimization of growth process and characterization of silicon based materials with molecular beam epitaxy. Two material systems are investigated in the course of this work: silicon/silicon suboxide multilayer structures and mono manganese silicide thin films. Mono manganese silicide (MnSi) is grown on Si(111) substrates with an hydrogen passivated surface, that is prepared by wet chemical processes. The growth start is performed by deposition of an amorphous Mn wetting layer that is subsequently annealed to form a MnSi seed layer on which the MnSi molecular beam epitaxy (MBE) is achieved. An amorphous or a crystalline Si cap layer is deposited onto the MnSi film to finalize the growth process and protect the sample from oxidation. With Raman spectroscopy it is shown that the crystalline cap layer is in fact single crystalline silicon. Results of x-ray diffraction and Raman spectroscopy confirm the growth of mono manganese silicide in contrast to other existing manganese silicide phases. In addition, in-plane and out-of-plane residual strain, and twinning of the MnSi thin film is detected with x-ray diffraction of symmetric and asymmetric reflections. Orientation between the Si substrate and the MnSi film is determined with the parallel lattice planes MnSi(210) and Si(511). Transport measurements show a T^2 dependence of the resistivity below 30K and metallic behavior above, a magneto resistance of 0.9\% and an unusual memory like effect of the resistance for an in-plane magnetic field sweep measurement. Silicon/Silicon suboxide (SiOx) multilayer structures are grown on Si(100) by interrupting the Si growth and oxidizing the surface with molecular oxygen. During oxidation the RHEED pattern changes from the Si(2x1) reconstruction to an amorphous pattern. When silicon growth is resumed a spotty RHEED pattern emerges, indicating a rough, three dimensional surface. The rough surface can be smoothed out with Si growth at substrate temperatures between 600°C and 700°C. Measurements with transmission electron microscopy show that a silicon suboxide layer of about 1nm embedded in single crystalline silicon is formed with the procedure. Multilayer structures are achieved by repeating the oxidation procedure when the Si spacer layer has a smooth and flat surface. The oxygen content of the suboxide layers can be varied between 7.6\% and 26.8\%, as determined with secondary ion mass spectrometry and custom-built simulations models for the x-ray diffraction. Structural stability of the multilayer structures is investigated by x-ray diffraction before and after rapid thermal annealing. For temperatures up to 1000°C the multilayer structures show no modification of the SiOx layer in x-ray diffraction.}, subject = {Molekularstrahlepitaxie}, language = {en} } @phdthesis{Frey2011, author = {Frey, Alexander}, title = {Spin-Dependent Tunneling and Heterovalent Heterointerface Effects in Diluted Magnetic II-VI Semiconductor Heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78133}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The contribution of the present thesis consists of three parts. They are centered around investigating certain semiconductor heterointerfaces relevant to spin injection, exploring novel, diluted magnetic single barrier tunneling structures, and further developing diluted magnetic II-VI resonant tunneling diodes.}, subject = {Zwei-Sechs-Halbleiter}, language = {en} } @phdthesis{Bass2011, author = {Baß, Utz}, title = {Analysis of MBE-grown II-VI Hetero-Interfaces and Quantum-Dots by Raman Spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73413}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The material system of interest in this thesis are II-VI-semiconductors. The first part of this thesis focuses on the formation of self-assembled CdSe-based quantum dots (QD) on ZnSe. The lattice constants of ZnSe and CdSe differ as much as about 7\\% and therefore a CdSe layer grown on top of ZnSe experiences a huge strain. The aspired strain relief constitutes in the self-assembly of QDs (i.e. a roughened layer structure). Additionally, this QD layer is intermixed with Zn as this is also a possibility to decrease the strain in the layer. For CdSe on ZnSe, in Molecular Beam Epitaxy (MBE), various QD growth procedures were analysed with respect to the resulting Cd-content of the non-stoichiometric ternary (Zn,Cd)Se. The evaluation was performed by Raman Spectroscopy as the phonon frequency depends on the Cd-content. The second part of the thesis emphasis on the interface properties of n-ZnSe on n-GaAs. Different growth start procedures of the ZnSe epilayer may lead to different interface configurations with characteristic band-offsets and carrier depletion layer widths. The analysis is mainly focused on the individual depletion layer widths in the GaAs and ZnSe. This non-destructive analysis is performed by evaluating the Raman signal which comprises of phonon scattering from the depleted regions and coupled plasmon-phonon scattering from regions with free carriers.}, subject = {Zwei-Sechs-Halbleiter}, language = {en} } @phdthesis{Mueller2012, author = {M{\"u}ller, Andreas}, title = {Towards functional oxide heterostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72478}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Oxide heterostructures attract a lot of attention as they display a vast range of physical phenomena like conductivity, magnetism, or even superconductivity. In most cases, these effects are caused by electron correlations and are therefore interesting for studying fundamental physics, but also in view of future applications. This thesis deals with the growth and characterization of several prototypical oxide heterostructures. Fe3O4 is highly ranked as a possible spin electrode in the field of spintronics. A suitable semiconductor for spin injection in combination with Fe3O4 is ZnO due to its oxide character and a sufficiently long spin coherence length. Fe3O4 has been grown successfully on ZnO using pulsed laser deposition and molecular beam epitaxy by choosing the oxygen partial pressure adequately. Here, a pressure variation during growth reduces an FeO-like interface layer. Fe3O4 films grow in an island-like growth mode and are structurally nearly fully relaxed, exhibiting the same lattice constants as the bulk materials. Despite the presence of a slight oxygen off-stoichiometry, indications of the Verwey transition hint at high-quality film properties. The overall magnetization of the films is reduced compared to bulk Fe3O4 and a slow magnetization behavior is observed, most probably due to defects like anti-phase boundaries originating from the initial island growth. LaAlO3/SrTiO3 heterostructures exhibit a conducting interface above a critical film thickness, which is most likely explained by an electronic reconstruction. In the corresponding model, the potential built-up owing to the polar LaAlO3 overlayer is compensated by a charge transfer from the film surface to the interface. The properties of these heterostructures strongly depend on the growth parameters. It is shown for the first time, that it is mainly the total pressure which determines the macroscopic sample properties, while it is the oxygen partial pressure which controls the amount of charge carriers near the interface. Oxygen-vacancy-mediated conductivity is found for too low oxygen pressures. A too high total pressure, however, destroys interface conductivity, most probably due to a change of the growth kinetics. Post-oxidation leads to a metastable state removing the arbitrariness in controlling the electronic interface properties by the oxygen pressure during growth. LaVO3/SrTiO3 heterostructures exhibit similar behavior compared to LaAlO3/SrTiO3 when it comes to a thickness-dependent metal-insulator transition. But in contrast to LaAlO3, LaVO3 is a Mott insulator exhibiting strong electron correlations. Films have been grown by pulsed laser deposition. Layer-by-layer growth and a phase-pure pervoskite lattice structure is observed, indicating good structural quality of the film and the interface. An electron-rich layer is found near the interface on the LaVO3 side for conducting LaVO3/SrTiO3. This could be explained by an electronic reconstruction within the film. The electrostatic doping results in a band-filling-controlled metal-insulator transition without suffering from chemical impurities, which is unavoidable in conventional doping experiments.}, subject = {Oxide}, language = {en} } @phdthesis{Lochner2011, author = {Lochner, Florian}, title = {Epitaxial growth and characterization of NiMnSb layers for novel spintronic devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72276}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {In dieser Dissertation wurde das epitaktische Wachstum und die Charakterisierung des halb-metallischen Ferromagneten NiMnSb vorgestellt. NiMnSb kristallisiert in der C1b Kristallstruktur, welche {\"a}hnlich der Zinkblendestruktur von h{\"a}ufig verwendeten III-V Halbleitern ist. Eine besondere Eigenschaft von NiMnSb ist die theoretische 100\% Spin-polarisation an der Fermikante, die es zu einem perfekten Kandidaten f{\"u}r Spintronikexperimente macht. Eine weitere große Rolle f{\"u}r diese Arbeit spielten die magnetischen Eigenschaften von NiMnSb, insbesondere die niedrige magnetische D{\"a}mpfung der abgeschiedenen Schichten. Alle gewachsenen Schichten wurden mit der MBE-Technik hergestellt. Die Schichtstapel f{\"u}r alle unterschiedlichen Experimente und Anwendungen wurden auf InP Substrate in (001) oder (111)B Orientierung abgeschieden. Vor der NiMnSb Schicht wurde eine undotierte (In,Ga)As Pufferschicht gewachsen. F{\"u}r einige Proben auf InP(111)B wurde zus{\"a}tzlich eine Si-dotierte (In,Ga)As-Schicht auf die undotierte (In,Ga)As-Schicht gewachsen. Die Dotierungskonzentration der n-dotierenten Schicht wurde per ETCH-CV bestimmt. Alle Schichten wurden auf strukturelle Eigenschaften und die NiMnSb-Schichten zus{\"a}tzlich auf magnetische Eigenschaften untersucht. F{\"u}r die strukturellen Untersuchungen wurde die in-situ Technik RHEED und das ex-situ Werkzeug HRXRD verwendet. Auf beiden Orientierungen zeigten die RHEED-Beobachtungen eine gute Qualit{\"a}t der gewachsenen Puffer- und halb-metallischen Ferromagnetschichten. Dieses Ergebnis wurde durch die HRXRD-Messung best{\"a}rkt. Es konnte die vertikale Gitterkonstante bestimmt werden. Der erhaltene Wert von NiMnSb auf InP(001) a(NiMnSb_vertikal) = 5.925 {\AA} ist in guter {\"U}bereinstimmung mit dem Literaturwert a(NiMnSb_Lit) = 5.903 {\AA}[Cas55]. F{\"u}r NiMnSb auf InP(111)B wurde eine vertikale Gitterkonstante von a(NiMnSb_vertikal) = 6.017 {\AA} bestimmt. Die horizontale Gitterkonstante des Puffers und des halb-metallischen Ferromagneten konnte in guter {\"U}bereinstimmung mit der Substratgitterkonstante bestimmt werden. Allerdings ist dieses Ergebnis ausschließlich bis zu einer Schichtdicke von ≈40nm f{\"u}r NiMnSb g{\"u}ltig. Um diese maximale Schichtdicke zu erh{\"o}hen, wurden NiMnSb auf InP(001) Substrate gewachsen und mit einer Ti/Au-Schicht als Schutz versehen. Mit diesen Proben wurden reziproke Gitterkarten des (533) Reflex mit GIXRD am Synchrotron BW2 des HASYLAB gemessen [Kum07]. Es hat sich gezeigt, dass sich die kritische Schichtdicke mehr als verdopppeln l{\"a}sst, wenn eine Ti/Au- Schicht direkt nach dem Wachstum von NiMnSb abgeschieden wird, ohne das Ultrahochvakuum (UHV) zu verlassen. Die magnetischen Eigenschaften wurden mit FMR Experimenten und SQUID bestimmt. Der gemessene magnetische D{\"a}mpfungsparameter α einer 40nm dicken NiMnSb Schicht auf InP(001) wurde zu 3.19e-3 entlang [1-10] bestimmt. Die resultierende Linienbreite von unseren Schichten auf InP(001) ist mehr als 4.88 mal kleiner als bei [Hei04] gemessen. Ein weiteres Ergebnis ist die Richtungsabh{\"a}ngigkeit der D{\"a}mpfung. Es wurde gemessen, dass die D{\"a}mpfung sich um mehr als 42\% {\"a}ndert, wenn das angelegte Feld um 45° von [1-10] nach [100] gedreht wird. Mit SQUID messten wir die S{\"a}ttigungsmagnetisierung von einer 40nm dicken NiMnSb-Schicht zu 4µB. NiMnSb-Schichten auf InP(111)B Substrate wurden ebenfalls mit FMR untersucht, mit einem {\"u}berraschenden Ergebnis. Diese Schichten zeigten nicht nur eine Abnahme im Anisotropiefeld mit ansteigender Schichtdicke, sondern auch ein uniaxiales Anisotropieverhalten. Dieses Verhalten kann mit Defekten in diesen Proben erkl{\"a}rt werden. Mit einem Rasterkraftmikroskop (AFM) wurden dreieckige Defekte gemessen. Diese Defekte haben ihren Ursprung in der Pufferschicht und beeinflussen die magnetischen Eigenschaften. Ein weiterer Teil dieser Arbeit widmete sich dem Verhalten von NiMnSb bei Temperaturen um die 80K. In unserer Probe konnte ein Phasen{\"u}bergang in den Messdaten des normalen Hall Koeffizienten, anomalen Hall-Term und Leitungswiderstand nicht beobachtet werden. Der letzte Teil dieser Arbeit behandelt verschiedene Spintronikanwendungen, welche aus unseren NiMnSb-Schichten gebaut wurden. In einer ersten Anwendung agiert die Magnetisierung auf einen Strom I. Die so genannte GMR-Anwendung besteht aus InP:S(001)- 180nm undotierten (In,Ga)As - 40nm NiMnSb - 10nm Cu - 6nm NiFe - 10nm Ru in CPP Geomtrie . Wir erhielten ein MR-Verh{\"a}ltnis von 3.4\%. In einer zweiten Anwendung agiert der Strom I auf die Magnetisierung und nutzt dabei das Ph{\"a}nomen des Spin-Drehmomentes aus. Dieser so genannte Spin Torque Oscillator (STO) emittiert Frequenzen im GHz Bereich (13.94GHz - 14.1GHz). Die letzte hergestellte Anwendung basiert auf dem magnetischen Wirbelph{\"a}nomen. F{\"u}r das Umschalten der Kernpolarit{\"a}t sind die gyrotropischen Frequenzen f + = 254MHz, f - = 217MHz und ein totales, statisches magnetisches Feld von nur mµ0H = 65mT n{\"o}tig. Die Umkehreffizienz wurde besser als 99\% bestimmt.}, subject = {Nickelverbindungen}, language = {en} } @phdthesis{Paul2010, author = {Paul, Markus Christian}, title = {Molecular beam epitaxy and properties of magnetite thin films on semiconducting substrates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56044}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {The present thesis is concerned with molecular beam epitaxy of magnetite (Fe3O4) thin films on semiconducting substrates and the characterization of their structural, chemical, electronic, and magnetic properties. Magnetite films could successfully be grown on ZnO substrates with high structural quality and atomically abrupt interfaces. The films are structurally almost completely relaxed exhibiting nearly the same in-plane and out-of-plane lattice constants as in the bulk material. Films are phase-pure and show only small deviations from the ideal stoichiometry at the surface and in some cases at the interface. Growth proceeds via wetting layer plus island mode and results in a domain structure of the films. Upon coalescence of growing islands twin-boundaries (rotational twinning) and anti-phase boundaries are formed. The overall magnetization is nearly bulk-like, but shows a slower approach to saturation, which can be ascribed to the reduced magnetization at anti-phase boundaries. However, the surface magnetization which was probed by x-ray magnetic circular dichroism was significantly decreased and is ascribed to a magnetically inactive layer at the surface. Such a reduced surface magnetization was also observed for films grown on InAs and GaAs. Magnetite could also be grown with nearly ideal iron-oxygen stoichiometry on InAs substrates. However, interfacial reactions of InAs with oxygen occur and result in arsenic oxides and indium enrichment. The grown films are of polycrystalline nature. For the fabrication of Fe3O4/GaAs films, a postoxidation of epitaxial Fe films on GaAs was applied. Growth proceeds by a transformation of the topmost Fe layers into magnetite. Depending on specific growth conditions, an Fe layer of different thickness remains at the interface. The structural properties are improved in comparison with films on InAs, and the resulting films are well oriented along [001] in growth direction. The magnetic properties are influenced by the presence of the Fe interface layer as well. The saturation magnetization is increased and the approach to saturation is faster than for films on the other substrates. We argue that this is connected to a decreased density of anti-phase boundaries because of the special growth method. Interface phases, viz. arsenic and gallium oxides, are quantified and different growth conditions are compared with respect to the interface composition.}, subject = {Molekularstrahlepitaxie}, language = {en} } @phdthesis{Wenisch2008, author = {Wenisch, Jan}, title = {Ferromagnetic (Ga,Mn)As Layers and Nanostructures: Control of Magnetic Anisotropy by Strain Engineering}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34552}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {This work studies the fundamental connection between lattice strain and magnetic anisotropy in the ferromagnetic semiconductor (Ga,Mn)As. The first chapters provide a general introduction into the material system and a detailed description of the growth process by molecular beam epitaxy. A finite element simulation formalism is developed to model the strain distribution in (Ga,Mn)As nanostructures is introduced and its predictions verified by high-resolution x-ray diffraction methods. The influence of lattice strain on the magnetic anisotropy is explained by an magnetostatic model. A possible device application is described in the closing chapter.}, subject = {Magnetischer Halbleiter}, language = {en} } @phdthesis{Mahapatra2007, author = {Mahapatra, Suddhasatta}, title = {Formation and Properties of Epitaxial CdSe/ZnSe Quantum Dots : Conventional Molecular Beam Epitaxy and Related Techniques}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-32831}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Albeit of high technological import, epitaxial self-assembly of CdSe/ZnSe QDs is non-trivial and still not clearly understood. The origin and attributes of these QDs are significantly different from those of their III-V and group-IV counterparts. For III-V and group-IV heterosystems, QD-formation is assigned to the Stranski Krastanow (SK) transition, wherein elastic relaxation of misfit strain leads to the formation of coherent three-dimensional (3D) islands, from a supercritically strained two-dimensional (2D) epilayer. Unfortunately, this phenomenon is inconspicuous for the CdSe/ZnSe heterosystem. Well-defined 3D islands are not readily formed in conventional molecular beam epitaxial (MBE) growth of CdSe on ZnSe. Consequently, several alternative approaches have been adopted to induce/enhance formation of QDs. This thesis systematically investigates three such alternative approaches, along with conventional MBE, with emphasis on the formation-mechanism of QDs, and optimization of their morphological and optical attributes. It is shown here that no distinct 3D islands are formed in MBE growth of CdSe on ZnSe. The surface of the CdSe layer represents a rough 2D layer, characterized by a dense array of shallow (<1nm) abutting mounds. In capped samples, the CdSe deposit forms an inhomogeneous CdZnSe quantum well (QW)-like structure. This ternary QW consists of local Cd-rich inclusions, which confine excitons three-dimensionally, and act as QDs. The density of such QDs is very high (~ 1012 cm-2). The QDs defined by the composition inhomogeneities of the CdZnSe QW presumably originate from the shallow mounds of the uncapped CdSe surface. By a technique wherein a CdSe layer is grown at a low temperature (TG = 230 °C) and subsequently annealed at a significantly higher temperature (TA =310 °C), tiny but distinct 3D islands are formed. In this work, the mechanism underlying the formation of these islands is reported. While the CdSe deposit forms a quasi-two-dimensional (quasi-2D) layer at TG = 230 °C, subsequent annealing at TA = 310 °C results in a thermally activated "up-climb" of adatoms onto two-dimensional clusters (or precursors) and concomitant nucleation of 3D islands. The areal density of QDs, achieved by this technique, is at least a decade lower than that typical for conventional MBE growth. It is demonstrated that further reduction is possible by delaying the temperature ramp-up to TA. In the second technique, formation of distinct islands is demonstrated by deposition of amorphous selenium (a-Se) onto a 2D CdSe epilayer at room temperature and its subsequent desorption at a higher temperature (TD = 230 °C). Albeit the self-assembled islands are large, they are severely truncated during subsequent capping with ZnSe, presumably due to segregation of Cd and Zn-alloying of the islands. The segregation phenomenon is analyzed in this work and correlated to the optical properties of the QDs. Additionally, very distinct vertical correlation of QDs in QD-superlattices, wherein the first QD-layer is grown by this technique and the subsequent ones by migration enhanced epitaxy (MEE), is reported. The process steps of the third variant technique, developed in course of this work, are very similar to those of the previous one-the only alteration being the substitution of selenium with tellurium as the cap-forming-material. This leads not only to large alteration of the morphological and optical attributes of the QDs, but also to formation of unique self-assembled island-patterns. Oriented dashes, straight and buckled chains of islands, and aligned island-pairs are formed, depending on the thickness of the Te-cap layer. The islands are partially alloyed with Te and emit luminescence at very low energies (down to 1.7 eV at room temperature). The Te cap layer undergoes (poly)crystallization during temperature ramp-up (from room temperature to TD) for desorption. Here, it is shown that the self-assembled patterns of the island-ensembles are determined by the pattern of the grain boundaries of the polycrystalline Te layer. Based on an understanding of the mechanism of pattern formation, a simple and "clean" method for controlled positioning of individual QDs and QD-based extended nanostructures, is proposed in this work. The studies carried out in the framework of this thesis provide not only a deeper insight into the microscopic processes governing the heteroepitaxial self-assembly of CdSe/ZnSe(001) QDs, but also concrete approaches to achieve, optimize, and control several technologically-important features of QD-ensembles. Reduction and control of QD-areal-density, pronounced vertical correlation of distinctly-defined QDs in QD-superlattices, and self-assembly of QD-based extended structures, as demonstrated in this work, might turn out to be beneficial for envisioned applications in information-, and communication-technologies.}, subject = {Nanostruktur}, language = {en} } @phdthesis{Schallenberg2004, author = {Schallenberg, Timo}, title = {Shadow mask assisted heteroepitaxy of compound semiconductor nanostructures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10290}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Shadow Mask assisted Molecular Beam Epitaxy (SMMBE) is a technique enabling selected area epitaxy of semiconductor heterostructures through shadow masks. The objective of this work was the development of the SMMBE technique for the reliable fabrication of compound semiconductor nanostructures of high structural and optical quality. In order to accomplish this, technological processes have been developed and optimized. This, in combination with model calculations of the basic kinetic growth processes has enabled the fabrication of high quality quantum structures. A high spatial precision and control of the incidence regions of the molecular beams during the SMMBE process are required for the fabrication of nanostructures. One of the technological developments to this effect, which has substantially enhanced the versatility of SMMBE, is the introduction of a new type of freestanding shadow masks: Growth through such a mask with different incidence angles of the molecular beams is equivalent to employing different mechanical masks, but is much more accurate since the precision of mechanical alignment is limited. A consistent model has been developed, which successfully explains the growth dynamics of molecular beam epitaxy through shadow masks. The redistribution of molecular fluxes under shadow masks may affect the growth rates on selected areas of the substrate drastically. In the case of compound semiconductors, reactions between the constituent species play important roles in controlling the growth rates as a function of the growth parameters. The predictions of the model regarding the growth of II-VI and III-V compounds have been tested experimentally and the dependence of the growth rates on the growth parameters has been verified. Moreover, it has been shown, that selected area epitaxy of II-VI and III-V compounds are governed by different surface kinetics. Coexisting secondary fluxes of both constituent species and the apparent non-existence of surface diffusion are characteristic for SMMBE of II-VI compounds. In contrast, III-V SMMBE is governed by the interplay between secondary group-V flux and the surface migration of group-III adatoms. In addition to the basic surface kinetic processes described by the model, the roles of orientation and strain-dependent growth dynamics, partial shadow, and material deposition on the mask (closure of apertures) have been discussed. The resulting advanced understanding of the growth dynamics (model and basic experiments) in combination with the implementation of technical improvements has enabled the development and application of a number of different processes for the fabrication of both II-VI and III-V nanostructures. In addition to specific material properties, various other phenomena have been exploited, e.g., self-organization. It has been shown that, e.g., single quantum dots and quantum wires can be reliably grown. Investigations performed on the SMMBE nanostructures have demonstrated the high positional and dimensional precision of the SMMBE technique. Bright cathodoluminescence demonstrates that the resulting quantum structures are of high structural and optical quality. In addition to these results, which demonstrate SMMBE as a prospective nanofabrication technique, the limitations of the method have also been discussed, and various approaches to overcome them have been suggested. Moreover, propositions for the fabrication of complex quantum devices by the multiple application of a stationary shadow mask have been put forward. In addition to selected area growth, the shadow masks can assist in etching, doping, and in situ contact definition in nanoscale selected areas. Due to the high precision and control over the dimensions and positions of the grown structures, which at the same time are of excellent chemical, crystal, and optical quality, SMMBE provides an interesting perspective for the fabrication of complex quantum devices from II-VI and III-V semiconductors.}, subject = {Verbindungshalbleiter}, language = {en} }