@phdthesis{Krampert2024, author = {Krampert, Laura}, title = {Dynamics of cardiac neutrophil diversity in murine myocardial infarction}, doi = {10.25972/OPUS-34957}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349576}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {After myocardial infarction, an inflammatory response is induced characterized by a sterile inflammation, followed by a reparative phase in order to induce cardiac healing. Neutrophils are the first immune cells that enter the ischemic tissue. Neutrophils have various functions in the ischemic heart, such as phagocytosis, production of reactive oxygen species or release of granule components. These functions can not only directly damage cardiac tissue, but are also necessary for initiating reparative effects in post-ischemic healing, indicating a dual role of neutrophils in cardiac healing after infarction. In recent years, evidence has been growing that neutrophils show phenotypic and functional differences in distinct homeostatic and pathogenic settings. Preliminary data of my working group using single-cell RNA-sequencing revealed the time- dependent heterogeneity of neutrophils, with different populations showing distinct gene expression profiles in ischemic hearts of mice, including the time-dependent appearance of a SiglecFhigh neutrophil population. To better understand the dynamics of neutrophil heterogeneity in the ischemic heart, my work aimed to validate previous findings at the protein level, as well as to investigate whether the distinct neutrophil populations show functional differences. Furthermore, in vivo depletion experiments were performed in order to modulate circulating neutrophil levels. Hearts, blood, bone marrow and spleens were processed and analyzed from mice after 1 day and 3 days after the onset of cardiac ischemia and analyzed using flow cytometry. Results showed that the majority of cardiac neutrophils isolated at day 3 after myocardial infarction were SiglecFhigh, whereas nearly no SiglecFhigh neutrophils could be isolated from ischemic hearts at day 1 after myocardial infarction. No SiglecFhigh neutrophils could be found in the blood, spleen and bone marrow either after 1 day or 3 days after myocardial infarction, indicating that the SiglecFhigh state of neutrophils is unique to the ischemic cardiac tissue. When I compared SiglecFhigh and SiglecFlow neutrophils regarding their phagocytosis activity and ROS production, SiglecFhigh neutrophils showed a higher phagocytosis ability than their SiglecFlow counterparts, as well as higher ROS production capacity. In vivo depletion experiments could not achieve successful and efficient depletion of cardiac neutrophils either 1 day or 3 days after myocardial infarction, but led to a shift of a higher percentage of SiglecFhigh expressing neutrophils in the depletion group. Bone marrow neutrophil levels only showed partial depletion at day 3 after MI. Regarding blood neutrophils, depletion efficiently reduced circulating neutrophils at both time points, 1 and 3 days after MI. To summarize, this work showed the time-dependent presence of different neutrophil states in the ischemic heart. The main population of neutrophils isolated 3 days after MI showed a high expression of SiglecF, a unique state that could not be detected at different time points or other organs. These SiglecFhigh neutrophils showed functional differences regarding their phagocytosis ability and ROS production. Further investigation is needed to reveal what role these SiglecFhigh neutrophils could play within the ischemic heart. To better target neutrophil depletion in vivo, more efficient or different anti-neutrophil strategies are needed.}, subject = {Neutrophiler Granulozyt}, language = {en} } @phdthesis{Krueger2021, author = {Kr{\"u}ger, S{\"o}ren}, title = {Unterschiedliche Einfl{\"u}sse von Komplement auf Reaktionen neutrophiler Granulozyten auf die Infektion mit \(Neisseria\) \(meningitidis\)}, doi = {10.25972/OPUS-24969}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249697}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The gram-negative diplococcus Neisseria meningitidis (Nme) is a frequent human-specific, commensal bacterium of the upper respiratory tract. Under certain conditions especially in infants, meningococci can translocate into the bloodstream and cause invasive meningococcal disease (IMD) manifesting as meningitis or sepsis or a combination of both. IMD is feared for its rapid progression and high fatality rate if it remains untreated. IMD affects up to one million people annually causing substantial morbidity and mortality worldwide. It is well-established that the complement system is an important protective factor in meningococcal disease through opsonization of bacteria with C3b and the lytic activity of the membrane attack complex although the inflammatory C5a/C5aR1 axis can aggravate IMD. The role of neutrophil granulocytes in meningococcal infection is less clear despite their abundant recruitment throughout the course of disease. This study aimed to characterize neutrophil responses to Nme in vitro and the influence of complement on these responses. In infection assays with whole blood and isolated PMNs, effective binding, internalization and killing of Nme by neutrophils was demonstrated. A significant complement-dependence of neutrophil phagocytosis and oxidative burst was observed. The opsonizing and lytic pathway of the complement cascade were found to be most relevant for these responses since blockade of C3 using inhibitor Compstatin Cp20 reduced phagocytosis and oxidative burst significantly more than the blockade of the inflammatory branch with C5aR1-antagonist PMX53. Opsonization with specific antibodies could not replicate the effect of complement activation indicating that engagement of neutrophil complement receptors, particularly complement receptor 3, is involved. Other neutrophil effector functions such as degranulation and IL-8 release were activated in a complement-independent manner implying activation by other inflammatory signals. Considering existing evidence on the overall protective effect of PMNs, further studies investigating the contribution of each neutrophil effector function to infection survival in vivo are required. Ideally, this should be studied in a murine meningitis or sepsis model in the context of complement activation.}, subject = {Neisseria meningitidis}, language = {en} } @phdthesis{MuellerLeisse2016, author = {M{\"u}ller-Leisse, Johanna}, title = {Influence of myeloid-derived suppressor cells and neutrophil granulocytes on natural killer cell homeostasis and function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140734}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Polymorphonuclear neutrophils (PMNs) are phagocytic cells of the innate immune system that efficiently kill bacteria. However, they also have regulatory effects on other immune cells and contribute to immunosuppression in cancer, which worsens the outcome. In particular, this has been demonstrated for a subset of granulocytic cells called myeloid- derived suppressor cells (MDSCs), but its distinction from PMNs is controversial. Most authors have explored the suppressive effects of MDSCs on T cells, but recent data suggest that NK cells are also affected. NK cells are crucial for the combat of tumor cells, in particular leukemic cells. There is hardly data available on the interaction between NK cells and suppressive granulocytic cells. Therefore, the aim of this thesis was to explore the effects of MDSCs and PMNs on the NK cell function against the leukemia cell line K562. In co-culture experiments, I demonstrate that granulocytic MDSCs and PMNs had similar effects on NK cell function and homeostasis. On the one hand, they positively influenced the survival and maturation of NK cells. On the other, they inhibited the activation, cytotoxicity and cytokine production of NK cells, both IFNγ and TNFα, in response to K562 target cells. Furthermore, I show a down-regulation of the activating receptor NKp30 on NK cells in the presence of MDSCs or PMNs, which may form part of the underlying suppressive mechanisms. However, there is also evidence for the involvement of other molecules. Further investigations are needed to confirm a relevant suppression of NK cells by granulocytic cells in cancer patients, and to identify therapeutic targets. The recognition that regular PMNs have similar effects on NK cells as MDSCs could simplify future experiments, since MDSCs are heterogeneous and laborious to isolate and identify. NKcells and granulocytes are among the first immune cells to reconstitute after hematopoietic stem cell transplantation, and NK cells may be particularly exposed to suppressive effects of granulocytes this scenario. Modulating these suppressive effects of granulocytes on NK cells therapeutically may yield a better NK cell function and an improved cancer prognosis. }, subject = {Nat{\"u}rliche Killerzelle}, language = {en} }