@phdthesis{Simin2017, author = {Simin, Dmitrij}, title = {Quantum Sensing with Highly Coherent Spin Centers in Silicon Carbide}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156199}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In the present work, the energetic structure and coherence properties of the silicon vacancy point defect in the technologically important material silicon carbide are extensively studied by the optically detected magnetic resonance (ODMR) technique in order to verify its high potential for various quantum applications. In the spin vacancy, unique attributes are arising from the C3v symmetry and the spin-3/2 state, which are not fully described by the standard Hamiltonian of the uniaxial model. Therefore, an advanced Hamiltonian, describing well the appearing phenomena is established and the relevant parameters are experimentally determined. Utilizing these new accomplishments, several quantum metrology techniques are proposed. First, a vector magnetometry scheme, utilizing the appearance of four ODMR lines, allows for simultaneous detection of the magnetic field strength and the tilting angle of the magnetic field from the symmetry axis of the crystal. The second magnetometry protocol utilizes the appearance of energetic level anticrossings (LAC) in the ground state (GS) energy levels. Relying only on the change in photoluminescence in the vicinity of this GSLACs, this all-optical method does not require any radio waves and hence provides a much easier operation with less error sources as for the common magnetometry schemes utilizing quantum points. A similar all-optical method is applied for temperature sensing, utilizing the thermal shift of the zero field splitting and consequently the anticrossing in the excited state (ES). Since the GSLACs show no dependence on temperature, the all-optical magnetometry and thermometry (utilizing the ESLACs) can be conducted subsequently on the same defect. In order to quantify the achievable sensitivity of quantum metrology, as well as to prove the potential of the Si-vacancy in SiC for quantum processing, the coherence properties are investigated by the pulsed ODMR technique. The spin-lattice relaxation time T1 and the spin-spin relaxation time T2 are thoroughly analyzed for their dependence on the external magnetic field and temperature. For actual sensing implementations, it is crucial to obtain the best signal-to-noise ratio without loss in coherence time. Therefore, the irradiation process, by which the defects are created in the crystal, plays a decisive role in the device performance. In the present work, samples irradiated with electrons or neutrons with different fluences and energies, producing different defect densities, are analyzed in regard to their T1 and T2 times at room temperature. Last but not least, a scheme to substantially prolong the T2 coherence time by locking the spin polarization with the dynamic decoupling Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence is applied.}, subject = {Siliciumcarbid}, language = {en} } @phdthesis{Kraus2014, author = {Kraus, Hannes}, title = {Optically Detected Magnetic Resonance on Organic and Inorganic Carbon-Based Semiconductors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-106308}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In dieser Arbeit werden drei verschiedene kohlenstoffbasierte Materialsysteme behandelt: (i) Organische Halbleiter und kleine Molek{\"u}le, in Kombination mit Fullerenen f{\"u}r Anwendungen in der organischen Photovoltaik (OPV), (ii) Halbleitende Einzelwand-Kohlenstoffnanor{\"o}hren und (iii) Siliziumkarbid (SiC), dessen Defekte erst seit kurzem als Kandidaten f{\"u}r Quantenapplikationen gehandelt werden. Alle Systeme wurden mit optisch detektierter Magnetresonanzspektroskopie (ODMR) untersucht. Im OPV-Kapitel, die intrinsischen Parameter und Orientierungen von Exzitonen mit hohem Spin wurden f{\"u}r die Materialsysteme P3HT, PTB7 und DIP untersucht. Speziell der Einfluss von Ordnung diesen organischen Systemen wurde diskutiert. Der zweite Teil des Kapitels besch{\"a}ftigt sich mit Triplettgeneration mittels Elektronenr{\"u}cktransfer im leistungsf{\"a}higen Materialsystem PTB7:PC71BM. Das Kohlenstoffnanor{\"o}hren-Kapitel zeigt zuert den ersten zweifelsfreien Nachweis von Triplettexzitonen in halbleitenden (6,5) Einzelwandkohlenstoffnanor{\"o}hren (SWNT), mittels ODMR-Spektroskopie. Ein Modell f{\"u}r die Anregungskinetik, die intrinsischen Parameter des Exzitons und Abh{\"a}ngigkeit von der Orientierung der R{\"o}hren wurden diskutiert. Der letzte Teil der Arbeit gilt Spinzentren in Siliziumkarbid. Nach einer kurzen Einf{\"u}hrung in das Materialsystem wird die Spinmultiplizit{\"a}t f{\"u}r die V2 und V3 Siliziumfehlstellen, sowie eines Frenkelpaars und eines noch nicht zugeordneten Defekts (UD) in 6H SiC, weiterhin f{\"u}r die V2 Fehlstelle und das Frenkelpaar in 4H SiC, durchg{\"a}ngig zu S=3/2 festgestellt. Das spinpolarisierte Bef{\"u}llen der 3/2-Zust{\"a}nde des Grundzustands der Siliziumfehlstellen erlaubt stimulierte Mikrowellenemission. Ausserdem wurde f{\"u}r UD und Frenkelpaar in 6H SiC eine große Temperaturabh{\"a}ngigkeit der Nullfeldparameter festgestellt, w{\"a}hrend die Siliziumfehlstellen temperaturunabh{\"a}ngig sind. Anwendung des UD und Frenkelpaars als Temperatursensor, und der Vakanzen als Vektormagnetometer wurden diskutiert.}, subject = {ODMR-Spektroskopie}, language = {en} }