@phdthesis{Speckner2009, author = {Speckner, Christian}, title = {LHC Phenomenology of the Three-Site Higgsless Model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-45931}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {The Three-Site Higgsless Model is alternative implementation of electroweak symmetry breaking which in the Standard Model is mediated by the Higgs mechanism. The main features of this model is the appearance of two new heavy vector resonances W' and Z' with masses > 380 GeV as well as a set of new heavy fermions (> 1.8 TeV). In this model, unitarity of the amplitudes for the scattering of longitudinal gauge bosons is maintained by the exchange of the W' and Z' up to a scale of ~2 TeV. Consistency with the electroweak precision observables from the LEP / LEP-II experiments implies an exceedingly small coupling of the new vector bosons to the light Standard Model fermions (about 3\% of the isospin gauge coupling). In this thesis, the LHC phenomenology of this scenario is explored. To this end, we calculated the couplings and widths of all the new particles and implemented the model into the Monte-Carlo eventgenerator WHIZARD / O'Mega. With this implementation, we simulated the parton-level production of the gauge boson and fermion partners in different channels possibly suitable for their discovery at the LHC. The results are presented together with an introduction to the model and a discussion of its properties. We find that, while the fermiophobic nature of the new heavy gauge bosons does make them intrinsically difficult to observe at a collider, the LHC should be able to establish the existence of both resonances and even give some hints about the properties of their couplings which would be a vital test of the consistency of such a scenario. For the heavy fermions, we find that their large mass is accompanied by relative widths of more than \$10\\%\$, making them ill-suited for a direct discovery at the LHC. Nevertheless, our simulations reveal that there is a part of parameter space where, given enough time, patience and a good understanding of detector and backgrounds, a direct discovery might be possible.}, subject = {LHC}, language = {en} }