@phdthesis{Imdahl2023, author = {Imdahl, Fabian Dominik}, title = {Development of novel experimental approaches to decipher host-pathogen interaction at the single-cell level}, doi = {10.25972/OPUS-28943}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289435}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Abstract: COVID-19 has impressively shown how quickly an emerging pathogen can have a massive impact on our entire lives and show how infectious diseases spread regardless of national borders and economic stability. We find ourselves in a post-antibiotic era and have rested too long on the laurels of past research, so today more and more people are dying from infections with multi-resistant germs. Infections are highly plastic and heterogeneous processes that are strongly dependent on the individual, whether on the host or pathogen side. Improving our understanding of the pathogenicity of microorganisms and finding potential targets for a completely new class of drugs is a declared goal of current basic research. To tackle this challenge, single-cell RNA sequencing (scRNA-seq) is our most accurate tool. In this thesis we implemented different state of the art scRNA-seq technologies to better understand infectious diseases. Furthermore, we developed a new method which is capable to resolve the transcriptome of a single bacterium. Applying a poly(A)-independent scRNA-seq protocol to three different, infection relevant growth conditions we can report the faithful detection of growth-dependent gene expression patterns in individual Salmonella Typhimurium and Pseudomonas aeruginosa bacteria. The data analysis shows that this method not only allows the differentiation of various culture conditions but can also capture transcripts across different RNA species. Furthermore, using state of the art imaging and single-cell RNA sequencing technologies, we comprehensively characterized a human intestinal tissue model which in further course of the project was used as a Salmonella enterica serovar Typhimurium infection model. While most infection studies are conducted in mice, lacking a human intestinal physiology, the in vitro human tissue model allows us to directly infer in vivo pathogenesis. Combining immunofluorescent imaging, deep single-cell RNA sequencing and HCR-FISH, applied in time course experiments, allows an unseen resolution for studying heterogeneity and the dynamics of Salmonella infection which reveals details of pathogenicity contrary to the general scientific opinion.}, subject = {Salmonella}, language = {en} } @phdthesis{Matera2022, author = {Matera, Gianluca}, title = {Global mapping of RNA-RNA interactions in \(Salmonella\) via RIL-seq}, doi = {10.25972/OPUS-26877}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268776}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {RNA represents one of the most abundant macromolecules in both eukaryotic and prokaryotic cells. Since the discovery that RNA could play important gene regulatory functions in the physiology of a cell, small regulatory RNAs (sRNAs) have been at the center of molecular biology studies. Functional sRNAs can be independently transcribed or derived from processing of mRNAs and other non-coding regions and they often associate with RNA-binding proteins (RBPs). Ever since the two major bacterial RBPs, Hfq and ProQ, were identified, the way we approach the identification and characterization of sRNAs has drastically changed. Initially, a single sRNA was annotated and its function studied with the use of low-throughput biochemical techniques. However, the development of RNA-seq techniques over the last decades allowed for a broader identification of sRNAs and their functions. The process of studying a sRNA mainly focuses on the characterization of its interacting RNA partner(s) and the consequences of this binding. By using RNA interaction by ligation and sequencing (RIL-seq), the present thesis aimed at a high-throughput mapping of the Hfq-mediated RNA-RNA network in the major human pathogen Salmonella enterica. RIL-seq was at first performed in early stationary phase growing bacteria, which enabled the identification of ~1,800 unique interactions. In- depth analysis of such complex network was performed with the aid of a newly implemented RIL-seq browser. The interactome revealed known and new interactions involving sRNAs and genes part of the envelope regulon. A deeper investigation led to the identification of a new RNA sponge of the MicF sRNA, namely OppX, involved in establishing a cross-talk between the permeability at the outer membrane and the transport capacity at the periplasm and the inner membrane. Additionally, RIL-seq was applied to Salmonella enterica grown in SPI-2 medium, a condition that mimicks the intracellular lifestyle of this pathogen, and finally extended to in vivo conditions during macrophage infection. Collectively, the results obtained in the present thesis helped unveiling the complexity of such RNA networks. This work set the basis for the discovery of new mechanisms of RNA-based regulation, for the identification of a new physiological role of RNA sponges and finally provided the first resource of RNA interactions during infection conditions in a major human pathogen.}, subject = {Small RNA}, language = {en} } @phdthesis{Santos2021, author = {Santos, Sara F. C.}, title = {Expanding the targetome of Salmonella small RNA PinT using MS2 affinity purification and RNA-Seq (MAPS)}, doi = {10.25972/OPUS-20492}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204926}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Bacterial small RNAs are key mediators of post-transcriptional gene regulation. An increasing number of sRNAs have been implicated in the regulation of virulence programs of pathogenic bacteria. Recently, in the enteric pathogen Salmonella Typhimurium, the PinT sRNA has gained increased importance as it is the most upregulated sRNA as Salmonella infects mammalian host cells (Westermann et al., 2016). PinT acts as a temporal regulator of Salmonella's two major pathogenicity islands, SPI-1 and SPI-2 (Kim et al., 2019; Westermann et al., 2016). However, the complete set of PinT targets, its role in Salmonella infection and host response is not yet fully understood. Building on the MS2 affinity purification and RNA- seq (MAPS) method (Lalaouna et al., 2015), we here set out to globally identify direct RNA ligands of PinT, relevant to Salmonella infection. We transferred the classical MAPS technique, based on sRNA-bait overexpression, to more physiological conditions, using endogenous levels of the sRNA. Making the henceforth identified targets, less likely to represent artefacts of the overexpression. More importantly, we progressed the MAPS technique to in vivo settings and by doing so, we were able pull-down bacterial RNA transcripts bound by PinT during macrophage infection. While we validate previously known PinT targets, our integrated data revealed novel virulence relevant target. These included mRNAs for the SPI-2 effector SteC, the PhoQ activator UgtL and the 30S ribosomal protein S22 RpsV. Next, we follow up on SteC, the best characterized virulence relevant PinT target. Using genetic and biochemical assays, we demonstrate that PinT represses steC mRNA by direct base-pairing and translational interference. PinT-mediated regulation of SteC leads to alterations in the host response to Salmonella infection. This regulation impacts the cytokine response of infected macrophages, by altering IL10 production, and possibly driving the macrophages to an anti-inflammatory state, more permise to infection. SteC is responsible for F-actin meshwork rearrangements around the SCV (Poh et al., 2008). Here we demonstrate that PinT-mediated regulation of SteC, impacts the formation of this actin meshwork in infected cells. Our results demonstrate that SteC expression is very tightly regulated by PinT in two layers; indirectly, by repressing ssrB and crp; and directly by binding to steC 5'UTR. PinT contributes to post-transcriptional cross-talk between invasion and intracellular replication programs of Salmonella, by controlling the expression of both SPI-1 and SPI-2 genes (directly and indirectly). Together, our collective data makes PinT the first sRNA in Gram-negatives with a pervasive role in virulence, at the center of Salmonella virulence programs and provide molecular input that could help explain the attenuation of pinT-deficient Salmonella strains in whole animal models of infection.}, language = {en} } @phdthesis{Froehlich2012, author = {Fr{\"o}hlich, Kathrin}, title = {Assigning functions to Hfq-dependent small RNAs in the model pathogen Salmonella Typhimurium}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85488}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Non-coding RNAs constitute a major class of regulators involved in bacterial gene expression. A group of riboregulators of heterogeneous size and shape referred to as small regulatory RNAs (sRNAs) control trans- or cis-encoded genes through direct base-pairing with their mRNAs. Although mostly inhibiting their target mRNAs, several sRNAs also induce gene expression. An important co-factor for sRNA activity is the RNA chaperone, Hfq, which is able to rearrange intramolecular secondary structures and to promote annealing of complementary RNA sequences. In addition, Hfq protects unpaired RNA from degradation by ribonucleases and thus increases sRNA stability. Co-immunoprecipitation of RNA with the Hfq protein, and further experimental as well as bioinformatical studies performed over the last decade suggested the presence of more than 150 different sRNAs in various Enterobacteria including Escherichia coli and Salmonellae. So-called core sRNAs are considered to fulfill central cellular activities as deduced from their high degree of conservation among different species. Approximately 25 core sRNAs have been implicated in gene regulation under a variety of environmental responses. However, for the majority of sRNAs, both the riboregulators' individual biological roles as well as modes of action remain to be elucidated. The current study aimed to define the cellular functions of the two highly conserved, Hfq-dependent sRNAs, SdsR and RydC, in the model pathogen Salmonella Typhimurium. SdsR had been known as one of the most abundant sRNAs during stationary growth phase in E. coli. Examination of the conservation patterns in the sdsR promoter region in combination with classic genetic analyses revealed SdsR as the first sRNA under direct transcriptional control of the alternative σ factor σS. In Salmonella, over-expression of SdsR down-regulates the synthesis of the major porin OmpD, and the interaction site in the ompD mRNA coding sequence was mapped by a 3'RACE-based approach. At the post-transcriptional level, expression of ompD is controlled by three additional sRNAs, but SdsR plays a specific role in porin regulation during the stringent response. Similarly, RydC, the second sRNA adressed in this study, was initially discovered in E. coli but appeared to be conserved in many related γ-proteobacteria. An interesting aspect of this Hfq-dependent sRNAs is its secondary structure involving a pseudo-knot configuration, while the 5' end remains single stranded. A transcriptomic approach combining RydC pulse-expression and scoring of global mRNA changes on microarrays was employed to identify the targets of this sRNA. RydC specifically activated expression of the longer of two versions of the cfa mRNA encoding for the phospholipid-modifying enzyme cyclopropane fatty acid synthase. Employing its conserved single-stranded 5' end, RydC acts as a positive regulator and masks a recognition site of the endoribonuclease, RNase E, in the cfa leader.}, subject = {Small RNA}, language = {en} }