@phdthesis{Kibe2024, author = {Kibe, Anuja}, title = {Translational landscape and regulation of recoding in virus-infected cells}, doi = {10.25972/OPUS-31099}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-310993}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {RNA viruses rely entirely on the host machinery for their protein synthesis and harbor non-canonical translation mechanisms, such as alternative initiation and programmed -1 ribosomal frameshifting (-1PRF), to suit their specific needs. On the other hand, host cells have developed a variety of defensive strategies to safeguard their translational apparatus and at times transiently shut down global translation. An infection can lead to substantial translational remodeling in cells and translational control is critical during antiviral response. Due to their sheer diversity, this control is likely unique to each RNA virus and the intricacies of post-transcriptional regulation are unclear in certain viral species. Here, we explored different aspects of translational regulation in virus-infected cells in detail. Using ribosome profiling, we extensively characterized the translational landscape in HIV-1 infected T cells, uncovering novel features of gene regulation in both host and virus. Additionally, we show that substantial pausing occurs prior to the frameshift site indicating complex regulatory mechanisms involving upstream viral RNA elements that can act as cis- regulators of frameshifting. We also characterized the mechanistic details of trans- modulation of frameshifting by host- and virus-encoded proteins. Host antiviral protein ZAP-S binds to the SARS-CoV-2 frameshift site and destabilizes the stimulatory structure, leading to frameshift inhibition. On the other hand, EMCV 2A protein stabilizes the viral frameshift site, thereby, activating EMCV frameshifting. While both proteins were shown to be antagonistic in their mechanism, they interact with the host translational machinery. Furthermore, we showed that frameshifting can be regulated not just by proteins, but also by small molecules. High-throughput screening of natural and synthetic compounds identified two potent frameshift inhibitors that also impeded viral replication, namely trichangion and compound 25. Together, this work largely enhances our understanding of gene regulation mechanisms in virus-infected cells and further validates the druggability of viral -1 PRF site.}, subject = {Zelle}, language = {en} } @phdthesis{Busch2013, author = {Busch, Martin}, title = {Aortic Dendritic Cell Subsets in Healthy and Atherosclerotic Mice and The Role of the miR-17~92 Cluster in Dendritic Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71683}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Atherosclerosis is accepted to be a chronic inflammatory disease of the arterial vessel wall. Several cellular subsets of the immune system are involved in its initiation and progression, such as monocytes, macrophages, T and B cells. Recent research has demonstrated that dendritic cells (DCs) contribute to atherosclerosis, too. DCs are defined by their ability to sense and phagocyte antigens, to migrate and to prime other immune cells, such as T cells. Although all DCs share these functional characteristics, they are heterogeneous with respect to phenotype and origin. Several markers have been used to describe DCs in different lymphoid and non-lymphoid organs; however, none of them has proven to be unambiguous. The expression of surface molecules is highly variable depending on the state of activation and the surrounding tissue. Furthermore, DCs in the aorta or the atherosclerotic plaque can be derived from designated precursor cells or from monocytes. In addition, DCs share both their marker expression and their functional characteristics with other myeloid cells like monocytes and macrophages. The repertoire of aortic DCs in healthy and atherosclerotic mice has just recently started to be explored, but yet there is no systemic study available, which describes the aortic DC compartment. Because it is conceivable that distinct aortic DC subsets exert dedicated functions, a detailed description of vascular DCs is required. The first part of this thesis characterizes DC subsets in healthy and atherosclerotic mice. It describes a previously unrecognized DC subset and also sheds light on the origin of vascular DCs. In recent years, microRNAs (miRNAs) have been demonstrated to regulate several cellular functions, such as apoptosis, differentiation, development or proliferation. Although several cell types have been characterized extensively with regard to the miRNAs involved in their regulation, only few studies are available that focus on the role of miRNAs in DCs. Because an improved understanding of the regulation of DC functions would allow for new therapeutic options, research on miRNAs in DCs is required. The second part of this thesis focuses on the role of the miRNA cluster miR- 17~92 in DCs by exploring its functions in healthy and atherosclerotic mice. This thesis clearly demonstrates for the first time an anti-inflammatory and atheroprotective role for the miR17-92 cluster. A model for its mechanism is suggested.}, subject = {Aorta}, language = {en} } @phdthesis{May2011, author = {May, Frauke}, title = {The role of the (hem)ITAM-coupled receptors C-type lectin-like receptor 2 (CLEC-2) and Glycoprotein (GP) VI for platelet function: in vitro and in vivo studies in mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65383}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die Thrombozytenaktivierung und -adh{\"a}sion sowie die nachfolgende Thrombusbildung ist ein essentieller Prozess in der prim{\"a}ren H{\"a}mostase, der aber auch irreversible Gef{\"a}ßverschl{\"u}sse und damit Herzinfarkt oder Schlaganfall verursachen kann. Erst k{\"u}rzlich wurde beschrieben, dass der C-type lectin-like receptor 2 (CLEC-2) auf der Thrombozytenoberfl{\"a}che exprimiert wird, jedoch wurde f{\"u}r diesen Rezeptor noch keine Funktion in den Prozessen der H{\"a}mostase und Thrombose gezeigt. In der vorliegenden Arbeit wurde die Rolle von CLEC-2 in der Thrombozytenfunktion und Thrombusbildung im Mausmodel untersucht. In dem ersten Teil dieser Arbeit konnte gezeigt werden, dass die Behandlung von M{\"a}usen mit dem neu generierten monoklonalen Antik{\"o}rper INU1, der gegen murines CLEC-2 gerichtet ist, zu dem vollst{\"a}ndigen und hochspezifischen Verlust des Rezeptors in zirkulierenden Thrombozyten f{\"u}hrte, ein Prozess, der als „Immundepletion" bezeichnet wird. Die CLEC-2-defizienten Thrombozyten waren nicht mehr durch den CLEC-2-spezifischen Agonisten Rhodozytin aktivierbar, w{\"a}hrend die Aktivierung durch alle anderen getesteten Agonisten nicht beeintr{\"a}chtigt war. Dieser selektive Defekt f{\"u}hrte unter Flussbedingungen ex vivo zu stark verminderter Aggregatbildung der Thrombozyten. Außerdem zeigten in vivo-Thrombosestudien, dass die gebildeten Thromben instabil waren und vermehrt embolisierten. Infolgedessen war die CLEC-2 Defizienz mit einem deutlichen Schutz vor arterieller Thrombose verbunden. Außerdem ließ die in INU1-behandelten M{\"a}usen beobachtete variable Verl{\"a}ngerung der Blutungszeit auf einen moderaten h{\"a}mostatischen Defekt schließen. Diese Ergebnisse zeigen zum ersten Mal, dass CLEC-2 in vitro und in vivo signifikant zur Thrombusstabilit{\"a}t beitr{\"a}gt und eine essentielle Rolle in der H{\"a}mostase und arteriellen Thrombose spielt. Daher stellt CLEC-2 eine potentiell neue antithrombotische Zielstruktur dar, die in vivo inaktiviert werden kann. Diese in vivo-Herabregulierung von Thrombozytenoberfl{\"a}chenrezeptoren k{\"o}nnte einen vielversprechenden Ansatz f{\"u}r zuk{\"u}nftige antithrombotische Therapien darstellen. Der zweite Teil dieser Arbeit behandelte den Effekt einer Doppelimmundepletion der immunoreceptor tyrosine-based activation motiv (ITAM)- und hemITAM-gekoppelten Rezeptoren Glykoprotein (GP) VI und CLEC-2 auf H{\"a}mostase und Thrombose mittels einer Kombination der GPVI- beziehungsweise CLEC-2-spezifischen Antik{\"o}rper JAQ1 und INU1. Eine Einzeldepletion von GPVI oder CLEC-2 in vivo beeintr{\"a}chtigte nicht die Expression und Funktion des jeweils anderen Rezeptors. Eine gleichzeitige Behandlung mit beiden Antik{\"o}rpern f{\"u}hrte jedoch zu dem nachhaltigen Verlust der GPVI- und CLEC-2-vermittelten Signale in Thrombozyten, w{\"a}hrend andere Signalwege nicht betroffen waren. Im Gegensatz zu den Einzeldefizienzen, wiesen die GPVI/CLEC-2 doppeldefizienten M{\"a}use einen schwerwiegenden Blutungsph{\"a}notyp auf. Außerdem f{\"u}hrte die Behandlung zu einer starken Beeintr{\"a}chtigung der arteriellen Thrombusbildung, die die Effekte der Einzeldefizienzen weit {\"u}bertraf. Von Bedeutung ist auch, dass gleiche Ergebnisse in Gp6-/- M{\"a}usen gefunden wurden, die mittels INU1-Behandlung CLEC-2-depletiert wurden. Dies veranschaulicht, dass der Blutungsph{\"a}notyp nicht durch Sekund{\"a}reffekte der kombinierten Antik{\"o}rperbehandlung hervorgerufen wurde. Diese Daten deuten darauf hin, dass GPVI und CLEC-2 sowohl unabh{\"a}ngig voneinander als auch gleichzeitig in vivo von der Thrombozytenoberfl{\"a}che herabreguliert werden k{\"o}nnen und lassen unerwartete redundante Funktionen der beiden Rezeptoren in H{\"a}mostase und Thrombose erkennen. Da beide Rezeptoren, GPVI und CLEC-2, als neue antithrombotische Zielstrukturen diskutiert werden, k{\"o}nnten diese Ergebnisse wichtige Auswirkungen auf die Entwicklung von anti-GPVI oder anti-CLEC-2-basierenden Antithrombotika haben.}, subject = {Thrombozyt}, language = {en} } @phdthesis{Schmitt2010, author = {Schmitt, Kathrin}, title = {Identification and Characterization of GAS2L3 as a Novel Mitotic Regulator in Human Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52704}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Precise control of mitotic progression is vital for the maintenance of genomic integrity. Since the loss of genomic integrity is known to promote tumorigenesis, the identification of knew G2/M regulatory genes attracts great attention. LINC, a human multiprotein complex, is a transcriptional activator of a set of G2/M specific genes. By depleting LIN9 in MEFs, a core subunit of LINC, Gas2l3 was identified as a novel LINC target gene. The so far uncharacterized Gas2l3 gene encodes for a member of the family of growth arrest specific 2 (GAS2) proteins, which share a highly conserved putative actin binding CH and a putative microtubule binding GAS2 domain. In the present study GAS2L3 was identified as a LINC target gene also in human cells. Gene expression analysis revealed that GAS2L3 transcription, in contrast to all other GAS2 family members, is highly regulated during the cell cycle with highest expression in G2/M. The GAS2L3 protein showed a specific localization pattern during the M phase: In metaphase, GAS2L3 localized to the mitotic spindle, relocated to the spindle midzone microtubules in late anaphase and concentrated at the midbody in telophase where it persisted until the end of cytokinesis. Overexpression of a set of different GAS2L3 deletion mutants demonstrated that the localization to the mitotic microtubule network is dependent on the C-terminus, whereas the midbody localization is dependent on full length GAS2L3 protein. Additionally, exclusive overexpression of the CH domain induced the formation of actin stress fibers, suggesting that the CH domain is an actin binding domain. In contrast, the GAS2 domain was neither needed nor sufficient for microtubule binding, indicating that there must be an additional so far unknown microtubule binding domain in the C-terminus. Interestingly, immunoblot analysis also identified the C-terminus as the domain responsible for GAS2L3 protein instability, partially dependent on proteasomal degradation. Consistent with its specific localization pattern, GAS2L3 depletion by RNAi demonstrated its responsibility for proper mitosis and cytokinesis. GAS2L3 depletion in HeLa cells resulted in the accumulation of multinucleated cells, an indicator for chromosome mis-segregation during mitosis. Also the amount of cells in cytokinesis was enriched, indicating failures in completing the last step of cytokinesis, the abscission. Strikingly, treatment with microtubule poisons that lead to the activation of the spindle assembly checkpoint (SAC) indicated that the SAC was weakened in GAS2L3 depleted cells. Although the exact molecular mechanism is still unknown, fist experiments support the hypothesis that GAS2L3 might be a regulator of the SAC master kinase BUBR1. In conclusion, this study provides first evidence for GAS2L3 as a novel regulator of mitosis and cytokinesis and it might therefore be an important guardian against tumorigenesis.}, subject = {Mensch}, language = {en} }