@phdthesis{Koch2014, author = {Koch, Miriam}, title = {Role of Coagulation Factor XII in Atherosclerosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Atherosclerosis is considered a chronic inflammatory disease of the arterial vessel wall which is not only modulated by innate and adaptive immune responses but also by factors of the blood coagulation system. In general hypercoagulability seems to increase the development and progression of experimental atherosclerosis in mice on an atherogenic background. In addition, the great majority of coagulation proteins including coagulation factor XII (FXII) have been detected in early and advanced human atherosclerotic lesions supporting the cross-link between the coagulation system and atherosclerosis. Moreover, FXII has been detected in close proximity to macrophages, foam cells and smooth muscle cells in these lesions and has been demonstrated to be functionally active in human plaques. Although these data indicate that factor XII may play a role in atherogenesis a direct contribution of FXII to atherogenesis has not been addressed experimentally to date. Furthermore, clinical studies examining the function of FXII in vascular disease have yielded conflicting results. Hence, in order to investigate the function of coagulation factor XII in atherosclerosis apolipoprotein E and FXII-deficient (F12\(^{-/-}\) apoE\(^{-/-}\)) mice were employed. Compared to F12\(^{+/+}\)apoE\(^{-/-}\) controls, atherosclerotic lesion formation was reduced in F12\(^{-/-}\)apoE\(^{-/-}\) mice, associated with diminished systemic T-cell activation and Th1-cell polarization after 12 weeks of high fat diet. Moreover, a significant decrease in plasma levels of complement factor C5a was evidenced in F12\(^{-/-}\)apoE\(^{-/-}\) mice. Interestingly, C5a increased the production of interleukin-12 (IL-12) in dendritic cells (DCs) and enhanced their capacity to trigger antigen-specific interferon-gamma (IFNγ) production in OTII CD4\(^+\) T cells in vitro. Importantly, a reduction in frequencies of IL-12 expressing splenic DCs from atherosclerotic F12\(^{-/-}\)apoE\(^{-/-}\) versus F12\(^{+/+}\)apoE\(^{-/-}\) mice was observed in vivo, accompanied by a diminished splenic Il12 transcript expression and significantly reduced IL-12 serum levels. Consequently, these data reveal FXII to play an important role in atherosclerotic lesion formation and to promote DC-induced and systemic IL 12 expression as well as pro-inflammatory T-cell responses likely at least in part via the activation of the complement system.}, subject = {Gerinnungsfaktor XII}, language = {en} } @phdthesis{Bruttel2015, author = {Bruttel, Valentin Stefan}, title = {Soluble HLA-G binds to dendritic cells which likely suppresses anti-tumour immune responses in regional lymph nodes in ovarian carcinoma}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127252}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Zusammenfassung Einleitung HLA-G, ein nicht-klassisches HLA bzw. MHC Klasse Ib Molek{\"u}l, kann sowohl als membrangebundenes als auch als l{\"o}sliches Molek{\"u}l verschiedenste Immunzellpopulationen effektiv inhibieren. Unter physiologischen Bedingungen wird HLA-G vor allem in der Plazenta exprimiert, wo es dazu beitr{\"a}gt den semiallogenen Embryo vor einer Abstoßung durch das m{\"u}tterliche Immunsystem zu besch{\"u}tzen. Außerdem wird HLA-G in einer Vielzahl von Tumoren wie zum Beispiel in Ovarialkarzinomen {\"u}berexprimiert. Ziel dieser Arbeit war es besonders die Rolle von l{\"o}slichem HLA-G im Ovarialkarzinom und die Expression von HLA-G in verschiedenen Subtypen des Ovarialkarzinoms genauer zu untersuchen. Ergebnisse Anhand eines Tissue Microarrays wurde best{\"a}tigt dass HLA-G unter physiologischen Bedingungen nur in sehr wenigen Geweben wie Plazenta oder Testes exprimiert wird. Außerdem wurden erstmals auch im Nebennierenmark hohe Expressionslevel detektiert. Im Gegensatz zur physiologischen Expression wurde HLA-G in ser{\"o}sen, muzin{\"o}sen, endometrioiden und Klarzellkarzinomen und somit in Tumoren aller untersuchten Subtypen des Ovarialkarzinoms detektiert. Am h{\"a}ufigsten war HLA-G in hochgradigen ser{\"o}sen Karzinomen {\"u}berexprimiert. Hier konnte gezeigt werden dass auf Genexpressionslevel in Ovarialkarzinomen die Expression des immunsuppressiven HLA-G mit der Expression von klassischen MHC Molek{\"u}len wie HLA-A, -B oder -C hochsignifikant korreliert. Außerdem konnte in Aszitesproben von Patientinnen mit Ovarialkarzinomen hohe Konzentrationen von l{\"o}slichem HLA-G nachgewiesen werden. Auch auf metastasierten Tumorzellen in regionalen Lymphknoten war HLA-G nachweisbar. {\"U}berraschenderweise wurde aber besonders viel HLA-G auf Dendritischen Zellen in Lymphknoten detektiert. Da in Monozyten und Dendritischen Zellen von gesunden Spendern durch IL-4 oder IL-10 im Gegensatz zu Literatur keine Expression von HLA-G induzierbar war, untersuchten wir ob Dendritische Zellen l{\"o}sliches HLA-G binden. Es konnte gezeigt werden, dass besonders Dendritische Zellen die in Gegenwart von IL-4, IL-10 und GM-CSF aus Monozyten generiert wurden (DC-10) effektiv l{\"o}sliches HLA-G {\"u}ber ILT Rezeptoren binden. In Abh{\"a}ngigkeit von ihrer Beladung mit HLA-G hemmen auch fixierte DC-10 Zellen noch die Proliferation von zytotoxischen CD8+ T Zellen. Zudem wurden regulatorische T Zellen induziert. Schlussfolgerungen Besonders in den am h{\"a}ufigsten diagnostizierten hochgradigen ser{\"o}sen Ovarialkarzinomen ist HLA-G in den meisten F{\"a}llen {\"u}berexprimiert. Durch die Expression immunsuppressiver MHC Klasse Ib Molek{\"u}le wie HLA-G k{\"o}nnen wahrscheinlich auch Tumore wachsen, die noch klassische MHC Molek{\"u}le exprimieren und aufgrund ihrer Mutationslast eigentlich vom Immunsystem erkannt und eliminiert werden m{\"u}ssten. L{\"o}sliches HLA-G k{\"o}nnte zudem lokal Immunantworten gegen Tumorantigene unterdr{\"u}cken indem es an Dendritische Zellen in regionalen Lymphknoten bindet. Diese Zellen pr{\"a}sentieren nomalerweise zytotoxischen T Zellen Tumorantigene und spielen daher eine entscheidende Rolle in der Entstehung von protektiven Immunantworten. Mit l{\"o}slichem HLA-G beladene Dendritische Zellen hemmen jedoch die Proliferation von CD8+ T Zellen und induzieren regulatorische T Zellen. Dadurch k{\"o}nnten Ovarialkarzinome "aus der Ferne" auch in metastasenfreien Lymphknoten die Entstehung von gegen den Tumor gerichteten Immunantworten unterdr{\"u}cken. Dieser erstmals beschriebene Mechanismus k{\"o}nnte auch in anderen malignen Erkrankungen eine Rolle spielen, da l{\"o}sliches HLA-G in einer Vielzahl von Tumorindikationen nachgewiesen wurde.}, subject = {HLA-G}, language = {en} } @phdthesis{Busch2013, author = {Busch, Martin}, title = {Aortic Dendritic Cell Subsets in Healthy and Atherosclerotic Mice and The Role of the miR-17~92 Cluster in Dendritic Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71683}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Atherosclerosis is accepted to be a chronic inflammatory disease of the arterial vessel wall. Several cellular subsets of the immune system are involved in its initiation and progression, such as monocytes, macrophages, T and B cells. Recent research has demonstrated that dendritic cells (DCs) contribute to atherosclerosis, too. DCs are defined by their ability to sense and phagocyte antigens, to migrate and to prime other immune cells, such as T cells. Although all DCs share these functional characteristics, they are heterogeneous with respect to phenotype and origin. Several markers have been used to describe DCs in different lymphoid and non-lymphoid organs; however, none of them has proven to be unambiguous. The expression of surface molecules is highly variable depending on the state of activation and the surrounding tissue. Furthermore, DCs in the aorta or the atherosclerotic plaque can be derived from designated precursor cells or from monocytes. In addition, DCs share both their marker expression and their functional characteristics with other myeloid cells like monocytes and macrophages. The repertoire of aortic DCs in healthy and atherosclerotic mice has just recently started to be explored, but yet there is no systemic study available, which describes the aortic DC compartment. Because it is conceivable that distinct aortic DC subsets exert dedicated functions, a detailed description of vascular DCs is required. The first part of this thesis characterizes DC subsets in healthy and atherosclerotic mice. It describes a previously unrecognized DC subset and also sheds light on the origin of vascular DCs. In recent years, microRNAs (miRNAs) have been demonstrated to regulate several cellular functions, such as apoptosis, differentiation, development or proliferation. Although several cell types have been characterized extensively with regard to the miRNAs involved in their regulation, only few studies are available that focus on the role of miRNAs in DCs. Because an improved understanding of the regulation of DC functions would allow for new therapeutic options, research on miRNAs in DCs is required. The second part of this thesis focuses on the role of the miRNA cluster miR- 17~92 in DCs by exploring its functions in healthy and atherosclerotic mice. This thesis clearly demonstrates for the first time an anti-inflammatory and atheroprotective role for the miR17-92 cluster. A model for its mechanism is suggested.}, subject = {Aorta}, language = {en} } @phdthesis{JordanGarrote2014, author = {Jordan Garrote, Ana-Laura}, title = {The role of host dendritic cells during the effector phase of intestinal graft-versus-host disease}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102130}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Monocytes can be functionally divided in two subsets, both capable to differentiate into dendritic cells (DCs): CX3CR1loCCR2+ classical monocytes, actively recruited to the sites of inflammation and direct precursors of inflammatory DCs; and CX3CR1hiCCR2- non-classical monocytes, characterized by CX3CR1-dependent recruitment to non-inflamed tissues. Yet, the function of non-classical monocyte-derived DCs (nc-mo-DCs), and the factors, which trigger their recruitment and DC differentiation, have not been clearly defined to date. Here we show that in situ differentiated nc-moDCs mediate immunosuppression in the context of intestinal graft-versus-host disease (GVHD). Employing multi-color confocal microscopy we observed a dramatic loss of steady state host-type CD103+ DC subset immediately after transplantation, followed by an enrichment of immune-regulatory CD11b+ nc-moDCs. Parabiosis experiments revealed that tissue-resident non-classical CX3CR1+ monocytes differentiated in situ into intestinal CD11b+ nc-moDCs after allogeneic hematopoietic cell transplantation (allo-HCT). Differentiation of this intestinal DC subset depended on CSF-1 but not on Flt3L, thus defining the precursors as monocytes and not pre-DCs. Importantly, CX3CR1 but not CCR2 was required for this DC subset differentiation, hence defining the precursors as non-classical monocytes. In addition, we identify PD-L1 expression by CX3CR1+ nc-moDCs as the major mechanism they employ to suppress alloreactive T cells during acute intestinal GVHD. All together, we demonstrate that host nc-moDCs surprisingly mediate immunosuppression in the context of murine intestinal GVHD - as opposed to classical "inflammatory" monocyte-derived dendritic cells (mo-DCs) - via coinhibitory signaling. This thorough study unravels for the first time a biological function of a - so far only in vitro and phenotypically described - DC subset. Our identification of this beneficial immunoregulatory DC subset points towards alternate future strategies in underpinning molecular pathways to foster their function. We describe an unexpected mechanism of nc-moDCs in allo-HCT and intestinal GVHD, which might also be important for autoimmune disorders or infections of the gastrointestinal tract.}, subject = {Knochenmarktransplantation}, language = {en} } @phdthesis{Masic2012, author = {Masic, Anita}, title = {Signaling via Interleukin-4 Receptor alpha chain during dendritic cell-mediated vaccination is required to induce protective immunity against Leishmania major in susceptible BALB/c mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75508}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Cutaneous leishmaniasis is endemic in tropical and subtropical regions of the world. Effective vaccination strategies are urgently needed because of the emergence of drug-resistant parasites and severe side effects of chemotherapy. The research group of Heidrun Moll previously established a DC-based vaccination strategy to induce complete and long-lasting immunity to experimental leishmaniasis using LmAg-loaded and CpG ODN-activated DC as a vaccine carrier. Prevention of tissue damages at the site of L. major inoculation can be achieved if the BALB/c mice were systemically given LmAg-loaded BMDC that had been exposed to CpG ODN. The interest in further exploring the role of IL-4 aroused as previous studies allowed establishing that IL-4 was involved in the redirection of the immune response towards a type 1 profile. Thus, wt BALB/c mice or DC-specific CD11ccreIL-4Rα-/lox BALB/c mice were given either wt or IL-4Rα-deficient LmAg-loaded BMDC exposed or not to CpG ODN prior to inoculation of 2 x 105 stationary phase L. major promastigotes into the BALB/c footpad. The results provide evidence that IL4/IL-4Rα-mediated signaling in the vaccinating DC is required to prevent tissue damages at the site of L. major inoculation, as properly conditioned wt DC but not IL-4Rα-deficient DC were able to confer resistance. Furthermore, uncontrolled L. major population size expansion was observed in the footpad and the footpad draining LN in CD11ccreIL-4Rα-/lox mice immunized with CpG ODN-exposed LmAg-loaded IL-4Rα-deficient DC, indicating the influence of IL-4R-mediated signaling in host DC to control parasite replication. In addition, no footpad damage was observed in BALB/c mice that were systemically immunized with LmAg-loaded wt DC doubly exposed to CpG ODN and recombinant IL-4. Discussing these findings allow the assumption that triggering the IL4/IL4Rα signaling pathway could be a precondition when designing vaccines aimed to prevent damaging processes in tissues hosting intracellular microorganisms.}, subject = {Leishmania major}, language = {en} } @phdthesis{Shishkova2008, author = {Shishkova, Yoana}, title = {Investigations of Measles virus regulation on activation and function of antigen presenting cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28283}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Interaction with dendritic cells (DCs) is considered as central to immunosuppression induced by viruses, including measles virus (MV). Commonly, viral infection of DCs abrogates their ability to promote T cell expansion, yet underlying mechanisms at a cellular level are undefined. It appears that MV-WTF infection modulate DCs morphology and dynamic adhesion on extra cellular matrix proteins such as FN or ICAM-1. By morphological criteria, WTF-DCs resembled LPS-DCs, associated with their mature phenotype also adhered less efficiently to the FN or ICAM-1 support. Reduced adhesion could not be explained by a lack of \&\#61538;1-integrin expression or activation. Similarly, MV-DCs strongly resembled LPS-DCs in that levels of focal adhesion kinase phosphorylated at Y397 were high and not further enhanced upon FN ligation. Fascin, a downstream effector of integrin signaling was highly upregulated in LPS-DCs and moderately in WTF-DCs, and differences in its subcellular distribution were not observed between both cell cultures. Apparently, however, fascin associated less efficiently with PKC\&\#61537; in WTF-DCs then in LPS-DCs. In line with findings for murine DCs, high motility of mature human DCs was found to require expression of Rac-GTPases. Human LPS-DCs and more so, DC transfected to express constitutively active Rac1 were the most motile DC-species analysed, confirming that migration of human DC also involved Rac activity. The velocity of WTF-DCs on FN is below that of LPS-DCs, indicating that maturation induced by WTF may be insufficient to completely promote integrin signaling which leads to Rac activation. The organisation of MV-DC/T cell interfaces was consistent with that of functional immune synapses with regard to CD3 clustering, MHC class II surface recruitment and MTOC location. These analyses are based in the selection of stable conjugates. Subsequently, however, neither contacts nor calcium flux can be stabilised and sustained in the majority of MV-DC/T cell conjugates and only promoted abortive T cell activation. Formation of spatially organised IS in T cells requites, prolonged contact durations. Therefore, aberrant distribution patterns of CD3 in these structures, if occurring, are not likely to contribute to the type of contacts predominating for WTF-DC/T cell interactions. It is also likely that transient interactions of less than 2 minutes may if at all, not efficiently support viral transmission to T cells. Transient interactions are typically observed with immature DCs in the absence of antigen, but this is not likely to be relevant in our allogenic system, which includes SA-loaded WTF-DCs. Thus, MV-infected DCs retain activities required for initiating, but not sustaining T cell conjugation and activation. This is partially rescued if surface expression of the MV glycoproteins on DCs is abolished by infection with a recombinant MV encoding VSV G protein instead, indicating that these contribute directly to synapse destabilisation and thereby act as effectors of T cell inhibition.}, subject = {Masern}, language = {en} } @phdthesis{Tiurbe2006, author = {Tiurbe, George Christian}, title = {Characterization of immature rat bone marrow-derived dendritic cells : Evaluation of their phenotype and immunomodulatory properties in vitro and after organ transplantation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-21429}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Solid organ transplantation is an established therapeutic approach in modern medicine to extend and to improve the life of patients in the final stages of organ failure. Transplantation between genetically non-identical individuals leads to the activation of the transplant recipient's immune system. This alloimmune response is a consequence of the recognition of foreign MHC molecules by alloreactive host T cells. To prevent their activation and the subsequently induced activation of further cell subsets (e.g. B cells, cytotoxic T cells, macrophages)immunosuppressive drugs are absolutely necessary in the clinic. However,permanent immunosuppression leads to severe side effects such as nephrotoxicity, diabetes and hyperlipidaemia, and a reduced immunity to infections and malignant diseases. At the moment, there is no real alternative to immunosuppression. The purpose of this study was to analyse the importance of rat dendritic cells with immune inhibitory properties to prevent the immune activation after experimental transplantation. The rat is one of the most important animal models for experimental organ transplantation in a clinic-relevant procedure. In order to modulate the immune response after transplantation in an antigenspecific manner, the strategy should include the alloantigens. These antigens have to be presented by immature dendritic cells in the absence of costimulatory signals in order to turn alloreactive T cells into anergic or regulatory T cells instead of effector T cells. For a certain rat model of allograft rejection,the immunodominant peptide P1 was identified as an important alloantigen which accelerates graft rejection. Such a model offers an attractive and practical approach to analyse the potential of host tolerogeneic dendritic cells pulsed with P1 to suppress the allograft-induced immune response in an antigen-specific manner without the need of chronic immunosuppression. A homogenous population of rat immature dendritic cells was generated from bone marrow precursors cultured with GM-CSF and IL-4 (= IL-4 DCs) or GM65 CSF and IL-10 (= IL-10 DCs). These cells with an identical immature phenotype showed no or a very low surface expression of costimulatory molecules like CD80 and CD86 and a 10-fold reduced expression of MHC class II molecules in comparison to mature splenic DCs. No obvious difference was observed between the phenotype of the IL-4 DCs and the IL-10 DCs. Neither IL-4 DCs nor IL-10 DCs were able to activate na{\"i}ve T cells or to restimulate antigen-specific T cells. This strong inhibitory effect, mediated within 24 hours, was dependent on the number of immature dendritic cells added to the proliferation assay. Antigen-specific T cells pre-incubated with IL-4 DCs and IL-10 DCs, respectively, were not able to proliferate in the presence of P1-pulsed mature DCs. This anergic state was reversible with the addition of exogenous IL-2. T cells incubated with IL-4 DCs (= IL-4 DC-Ts) were able to inhibit the T cell proliferation in a cell number dependent manner. In contrast, antigen-specific T cells pre-incubated with P1-pulsed IL-10 DCs (= IL-10 DC-Ts)showed no effect on the proliferation assay. This was the unique difference between IL-4 DCs and IL-10 DCs found in the present study. Immature DCs influenced also the immune response after transplantation. Different numbers of P1-loaded immature IL-4 DCs and IL-10 DCs were transferred intravenously into Lewis rats one day before transplantation. The best results were obtained with 30 million P1-pulsed immature DCs which prolonged the survival time to a median of 11.2 ± 1.6 days. In addition, the antigen specificity of this effect was demonstrated with a third-party graft from Brown Norway donors. These findings suggest that an antigen-specific modulation of the immune response is possible using immature dendritic cells loaded with the allogeneic antigens. Even more, the protocols described in the present study show that the immune system can be, at least temporarily, controlled after transplantation without the use of immunosuppressive drugs.}, language = {en} }