@phdthesis{Xian2014, author = {Xian, Yibo}, title = {Identification of essential genes and novel virulence factors of Neisseria gonorrhoeae by transposon mutagenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102659}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea. It is defined as a super bacterium by the WHO due to the emergence of gonococci that are resistant to a variety of antibiotics and a rapidly increasing infection incidence. Genome-wide investigation of neisserial gene essentiality and novel virulence factors is urgently required in order to identify new targets for anti-neisserial therapeutics. To identify essential genes and new virulence factors, a high-density mutant library in N. gonorrhoeae MS11 was generated by in vitro transposon mutagenesis. The transposon library harbors more than 100,000 individual mutants, a density that is unprecedented in gonococcal research. Essential genes in N. gonorrhoeae were determined by enumerating frequencies of transposon insertion sites (TIS) with Illumina deep sequencing (Tn-seq). Tn-seq indicated an average distance between adjacent TIS of 25 bp. Statistical analysis unequivocally demonstrated 781 genes that were significantly depleted in TIS and thus are essential for Neisseria survival. A subset of the genes was experimentally verified to comprise essential genes and thus support the outcome of the study. The hereby identified candidate essential genes thus may constitute excellent targets for the development of new antibiotics or vaccines. In a second study, the transposon mutant library was applied in a genome-scale "negative-selection strategy" to identify genes that are involved in low phosphate-dependent invasion (LPDI). LPDI is dependent on the Neisseria porin subtype PorBIA which acts as an epithelial cell invasin in absence of phosphate and is associated with severe pathogenicity in disseminated gonococcal infections (DGI). Tn-seq demonstrated 98 genes, which were involved in adherence to host cells and 43 genes involved in host cell invasion. E.g. the hypothetical protein NGFG_00506, an ABC transporter ATP-binding protein NGFG_01643, as well as NGFG_04218 encoding a homolog of mafI in N. gonorrhoeae FA1090 were experimentally verified as new invasive factors in LPDI. NGFG_01605, a predicted protease, was identified to be a common factor involved in PorBIA, Opa50 and Opa57-mediated neisserial engulfment by the epithelial cells. Thus, this first systematic Tn-seq application in N. gonorrhoeae identified a set of previously unknown N. gonorrhoeae invasive factors which demonstrate molecular mechanisms of DGI.}, subject = {Neisseria gonorrhoeae}, language = {en} } @phdthesis{Valchanova2006, author = {Valchanova, Stamatova Ralitsa}, title = {Functional analysis of the murine cytomegalovirus genes m142 and m143}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-20215}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Human cytomegalovirus (HCMV) infection causes clinical symptoms in immunocompromised individuals such as transplantant recipients and AIDS patients. The virus is also responsible for severe complications in unborn children and young infants. The species specificity of HCMV prevents the direct study of mechanisms controlling the infection in animal models. Instead, the murine cytomegalovirus (MCMV) is used as a model system. Human and murine CMVs have large double-stranded DNA genomes, encoding nearly 170 genes. About 30\% of the genes are committed to essential tasks of the virus. The remaining genes are involved in virus pathogenesis or host interaction and are dispensable for virus replication. The CMV genes are classified in gene families, based on sequence homology. In the present work, the function of two genes of the US22 gene family was analyzed. The MCMV genes m142 and m143 are the only members of this family that are essential for virus replication. These genes also differ from the remaining ten US22 gene family members in that they lack 1 of 4 conserved sequence motifs that are characteristic of this family. The same conserved motif is missing in the HCMV US22 family members TRS1 and IRS1, suggesting a possible functional homology. To demonstrate an essential role of m142 and m143, the genes were deleted from the MCMV genome, and the mutants were reconstituted on complementing cells. Infection of non-complementing cells with the deletion mutants did not result in virus replication. Virus growth was rescued by reinsertion of the corresponding genes. Cells infected with the viral deletion mutants synthesized reduced amounts of viral DNA, and viral late genes were not expressed. However, RNA analyses showed that late transcripts were present, excluding a role of m142 and m143 in regulation of gene transcription. Metabolic labelling experiments showed that total protein synthesis at late times postinfection was impaired in cells infected with deletion mutants. Moreover, the dsRNA-dependent protein kinase R (PKR) and its target protein, the translation initiation factor 2\&\#945; (eIF2\&\#945;) were phosphorylated in these cells. This suggested that the m142 and m143 are required for blocking the PKR-mediated shut-down of protein synthesis. Expression of the HCMV gene TRS1, a known inhibitor of PKR activation, rescued the replication of the deletion mutants, supporting the observation that m142 and m143 are required to inhibit this innate immune response of the host cell.}, subject = {Maus}, language = {en} }