@phdthesis{Krampert2024, author = {Krampert, Laura}, title = {Dynamics of cardiac neutrophil diversity in murine myocardial infarction}, doi = {10.25972/OPUS-34957}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349576}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {After myocardial infarction, an inflammatory response is induced characterized by a sterile inflammation, followed by a reparative phase in order to induce cardiac healing. Neutrophils are the first immune cells that enter the ischemic tissue. Neutrophils have various functions in the ischemic heart, such as phagocytosis, production of reactive oxygen species or release of granule components. These functions can not only directly damage cardiac tissue, but are also necessary for initiating reparative effects in post-ischemic healing, indicating a dual role of neutrophils in cardiac healing after infarction. In recent years, evidence has been growing that neutrophils show phenotypic and functional differences in distinct homeostatic and pathogenic settings. Preliminary data of my working group using single-cell RNA-sequencing revealed the time- dependent heterogeneity of neutrophils, with different populations showing distinct gene expression profiles in ischemic hearts of mice, including the time-dependent appearance of a SiglecFhigh neutrophil population. To better understand the dynamics of neutrophil heterogeneity in the ischemic heart, my work aimed to validate previous findings at the protein level, as well as to investigate whether the distinct neutrophil populations show functional differences. Furthermore, in vivo depletion experiments were performed in order to modulate circulating neutrophil levels. Hearts, blood, bone marrow and spleens were processed and analyzed from mice after 1 day and 3 days after the onset of cardiac ischemia and analyzed using flow cytometry. Results showed that the majority of cardiac neutrophils isolated at day 3 after myocardial infarction were SiglecFhigh, whereas nearly no SiglecFhigh neutrophils could be isolated from ischemic hearts at day 1 after myocardial infarction. No SiglecFhigh neutrophils could be found in the blood, spleen and bone marrow either after 1 day or 3 days after myocardial infarction, indicating that the SiglecFhigh state of neutrophils is unique to the ischemic cardiac tissue. When I compared SiglecFhigh and SiglecFlow neutrophils regarding their phagocytosis activity and ROS production, SiglecFhigh neutrophils showed a higher phagocytosis ability than their SiglecFlow counterparts, as well as higher ROS production capacity. In vivo depletion experiments could not achieve successful and efficient depletion of cardiac neutrophils either 1 day or 3 days after myocardial infarction, but led to a shift of a higher percentage of SiglecFhigh expressing neutrophils in the depletion group. Bone marrow neutrophil levels only showed partial depletion at day 3 after MI. Regarding blood neutrophils, depletion efficiently reduced circulating neutrophils at both time points, 1 and 3 days after MI. To summarize, this work showed the time-dependent presence of different neutrophil states in the ischemic heart. The main population of neutrophils isolated 3 days after MI showed a high expression of SiglecF, a unique state that could not be detected at different time points or other organs. These SiglecFhigh neutrophils showed functional differences regarding their phagocytosis ability and ROS production. Further investigation is needed to reveal what role these SiglecFhigh neutrophils could play within the ischemic heart. To better target neutrophil depletion in vivo, more efficient or different anti-neutrophil strategies are needed.}, subject = {Neutrophiler Granulozyt}, language = {en} } @phdthesis{Frischholz2021, author = {Frischholz, Sebastian}, title = {Resveratrol Counteracts IL-1β-mediated Impairment of Extracellular Matrix Deposition in 3D Articular Chondrocyte Constructs}, doi = {10.25972/OPUS-23745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237453}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Articular cartilage is an exceptional connective tissue which by a network of fibrillar collagen and glycosaminoglycan (GAG) molecules allows both low- friction articulation and distribution of loads to the subchondral bone (Armiento et al., 2018, Ulrich-Vinther et al., 2003). Because of its very limited ability to self-repair, chondral defects following traumatic injury increase the risk for secondary osteoarthritis (OA) (Muthuri et al., 2011). Still, current OA treatments such as common nonsteroidal anti-inflammatory drugs (NSAIDs) and joint replacement primarily address end-stage symptoms (Tonge et al., 2014). As low-grade inflammation plays a pivotal role in the pathogenesis of OA (Robinson et al., 2016), there is a strong demand for novel therapeutic concepts, such as integrating application of anti-inflammatory agents into cartilage cell- based therapies in order to effectively treat OA affected joints in early disease stages. The polyphenolic phytoalexin resveratrol (RSV), found in the skin of red grapes, berries, and peanuts, has been shown to have effective anti-inflammatory properties (Shen et al., 2012). However, its long-term effects on 3D chondrocyte constructs cultured in an inflammatory environment with regard to tissue quality have remained unexplored so far. Therefore, in this study, pellets made from expanded porcine articular chondrocytes were cultured for 14 days with either the pro-inflammatory cytokine interleukin-1β (IL-1β) (1 - 10 ng/ml) or RSV (50 μM) alone, or a co-treatment with both agents. Constructs treated with chondrocyte medium only served as control. Treatment with IL-1β at 10 ng/ml resulted in a significantly smaller pellet size and reduced DNA content. However, RSV counteracted the IL-1β-induced decrease and significantly enhanced diameter and DNA content. Also, in terms of GAG deposition, treatment with IL-1β at 10 ng/ml resulted in a tremendous depletion of absolute GAG content and GAG/DNA. Again, RSV co-treatment counteracted the inflammatory stimulus and led to a partial recovery of GAG content. Histological analysis utilizing safranin-O staining confirmed these findings. Marked expression of the cartilage-degrading enzyme matrix metalloproteinase 13 (MMP13) was detected in IL-1β-treated pellets, but none upon RSV co- treatment. Moreover, co-treatment of IL-1β-challenged constructs with RSV significantly increased absolute collagen content. However, under non- inflammatory conditions, RSV induced gene expression and protein accumulation of collagen type X, a marker for undesirable hypertrophy. Taken together, in the present thesis, RSV was demonstrated to elicit marked beneficial effects on the extracellular matrix composition of 3D cartilaginous constructs in long-term inflammatory culture in vitro, but also induced hypertrophy under non-inflammatory conditions. Based on these findings, further experiments examining multiple concentrations of RSV under various inflammatory conditions appear desirable concerning potential therapeutic applicability in OA.}, subject = {Resveratrol}, language = {en} } @phdthesis{Karl2017, author = {Karl, Franziska}, title = {The role of miR-21 in the pathophysiology of neuropathic pain using the model of B7-H1 knockout mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156004}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The impact of microRNA (miRNA) as key players in the regulation of immune and neuronal gene expression and their role as master switches in the pathophysiology of neuropathic pain is increasingly recognized. miR-21 is a promising candidate that could be linked to the immune and the nociceptive system. To further investigate the pathophysiological role of miR-21 in neuropathic pain, we assesed mice deficient of B7 homolog 1 (B7-H1 ko), a protein with suppressive effect on inflammatory responses. B7-H1 ko mice and wildtype littermates (WT) of three different age-groups, young (8 weeks), middle-aged (6 months), and old (12 months) received a spared nerve injury (SNI). Thermal withdrawal latencies and mechanical withdrawal thresholds were determined. Further, we investigated anxiety-, depression-like and cognitive behavior. Quantitative real time PCR was used to determine miR-21 relative expression in peripheral nerves, dorsal root ganglia and white blood cells (WBC) at distinct time points after SNI. Na{\"i}ve B7-H1 ko mice showed mechanical hyposensitivity with increasing age. Young and middle-aged B7-H1 ko mice displayed lower mechanical withdrawal thresholds compared to WT mice. From day three after SNI both genotypes developed mechanical and heat hypersensitivity, without intergroup differences. As supported by the results of three behavioral tests, no relevant differences were found for anxiety-like behavior after SNI in B7-H1 ko and WT mice. Also, there was no indication of depression-like behavior after SNI or any effect of SNI on cognition in both genotypes. The injured nerves of B7-H1 ko and WT mice showed higher miR-21 expression and invasion of macrophages and T cells 7 days after SNI without intergroup differences. Perineurial miR-21 inhibitor injection reversed SNI-induced mechanical and heat hypersensitivity in old B7-H1 ko and WT mice. This study reveals that reduced mechanical thresholds and heat withdrawal latencies are associated with miR-21 induction in the tibial and common peroneal nerve after SNI, which can be reversed by perineurial injection of a miR-21 inhibitor. Contrary to expectations, miR-21 expression levels were not higher in B7-H1 ko compared to WT mice. Thus, the B7-H1 ko mouse may be of minor importance for the study of miR-21 related pain. However, these results spot the contribution of miR-21 in the pathophysiology of neuropathic pain and emphasize the crucial role of miRNA in the regulation of neuronal and immune circuits that contribute to neuropathic pain.}, subject = {neuropathic pain}, language = {en} } @phdthesis{Panjwani2015, author = {Panjwani, Priyadarshini}, title = {Induction, Imaging, Histo-morphological and Molecular Characterization of Myocarditis in the Rat to Explore Novel Diagnostic Strategies for the Detection of Myocardial Inflammation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122469}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Fulminant myocarditis is rare but a potentially life-threatening disease. Acute or mild myocarditis following acute ischemia is generally associated with a profound activation of the host's immune system. On one hand this is mandatory to protect the host's heart by fighting the invading agents (i.e., bacteria, viruses or other microbial agents) and/or to induce healing and repair processes in the damaged myocardium. On other hand, uncontrolled activation of the immune system may result in the generation of auto-reactive (not always beneficial) immune cells. Myocarditis or inflammatory cardiomyopathy is characterized by focal or diffuse infiltrates, myocyte necrosis and/or apoptosis and subsequent fibrotic replacement of the heart muscle. In humans, about 30\% of the myocarditis-patients develop dilated cardiomyopathy. As the clinical picture of myocarditis is multifaceted, it is difficult to diagnose the disease. Therefore, the main goal of the present work was to test and further develop novel non-invasive methods for the detection of myocardial inflammation by employing both contrast enhanced MRI techniques as well as novel nuclear tracers that are suitable for in vivo PET/ SPECT imaging. As a part of this thesis, a pre-clinical animal model was successfully established by immunizing female Lewis rats with whole-porcine cardiac myosin (CM). Induction of Experimental Autoimmune Myocarditis (EAM) is considered successful when anti-myosin antibody titers are increased more than 100-fold over control animals and pericardial effusion develops. In addition, cardiac tissues from EAM-rats versus controls were analyzed for the expression of various pro-inflammatory and fibrosis markers. To further exploit non-invasive MRI techniques for the detection of myocarditis, our EAM-rats were injected either with (1) ultra-small Paramagnetic iron oxide particles (USPIO's; Feraheme®), allowing for in vivo imaging , (2) micron sized paramagnetic iron oxide particles (MPIO) for ex vivo inflammatory cell-tracking by cMRI, or (3) with different radioactive nuclear tracers (67gallium citrate, 68gallium-labeled somatostatin analogue, and 68gallium-labeled cyclic RGD-peptide) which in the present work have been employed for autoradiographic imaging, but in principle are also suitable for in vivo nuclear imaging (PET/SPECT). In order to compare imaging results with histology, consecutive heart sections were stained with hematoxylin \& eosin (HE, for cell infiltrates) and Masson Goldner trichrome (MGT, for fibrosis); in addition, immuno-stainings were performed with anti-CD68 (macrophages), anti-SSRT2A (somatostatin receptor type 2A), anti-CD61 (β3-integrins) and anti-CD31 (platelet endothelial cell adhesion molecule 1). Sera from immunized rats strongly reacted with cardiac myosin. In immunized rats, echocardiography and subsequent MRI revealed huge amounts of pericardial effusion (days 18-21). Analysis of the kinetics of myocardial infiltrates revealed maximal macrophage invasion between days 14 and 28. Disappearance of macrophages resulted in replacement-fibrosis in formerly cell-infiltrated myocardial areas. This finding was confirmed by the time-dependent differential expression of corresponding cytokines in the myocardium. Immunized animals reacted either with an early or a late pattern of post-inflammation fibrosis. Areas with massive cellular infiltrates were easily detectible in autoradiograms showing a high focal uptake of 67gallium-citrate and 68gallium labeled somatostatin analogues (68Ga DOTA-TATE). Myocardium with a loss of cardiomyocytes presented a high uptake of 68gallium labeled cyclic RGD-peptide (68Ga NOTA-RGD). MRI cell tracking experiments with Feraheme® as the contrast-agent were inconclusive; however, strikingly better results were obtained when MPIOs were used as a contrast-agent: histological findings correlated well with in vivo and ex vivo MPIO-enhanced MRI images. Imaging of myocardial inflammatory processes including the kinetics of macrophage invasion after microbial or ischemic damage is still a major challenge in, both animal models and in human patients. By applying a broad panel of biochemical, histological, molecular and imaging methods, we show here that different patterns of reactivity may occur upon induction of myocarditis using one and the same rat strain. In particular, immunized Lewis rats may react either with an early or a late pattern of macrophage invasion and subsequent post-inflammation fibrosis. Imaging results achieved in the acute inflammatory phase of the myocarditis with MPIOs, 67gallium citrate and 68gallium linked to somatostatin will stimulate further development of contrast agents and radioactive-nuclear tracers for the non-invasive detection of acute myocarditis and in the near future perhaps even in human patients.}, subject = {Ratte}, language = {en} } @phdthesis{Schwab2009, author = {Schwab, Nicholas}, title = {The importance of CD8\(^+\) T cells and antigen-presenting cells in the immune reaction of primary inflammatory versus degenerative diseases}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37330}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {The bidirectional influence of parenchymal cells and cells of the immune system, especially of antigen-presenting and CD8\(^+\) T cells, in situations of putative auto- immune pathogenicity and degeneration was the main topic of this thesis. In the first part, the influence of human muscle cells on antigen-presenting cells was investigated. In inflammatory myopathies prominent infiltrates of immune cells containing T cells and antigen-presenting cells like macrophages and dendritic cells are present. The hypothesis was that human myoblasts have an inhibiting influence on these antigen-presenting cells under homeostatic conditions. A dysfunction or impairment under inflammatory circumstances might contribute to the development of myopathic conditions. The surface analysis of dendritic cells cocultured with myoblasts showed that immature dendritic cells could be driven into a reversible semi- mature state with significantly elevated levels of CD80. These dendritic cells were additionally characterized by their inhibiting function on T-cell proliferation. It was also shown that the lysates of healthy myoblasts could strongly enhance the phagocytic ability of macrophages, which could help with muscle regeneration and which might be disturbed in myositis patients. The second part of this thesis was about the clonal specificity of CD8\(^+\) T cells in a mouse model with genetically induced over-expression of PLP in oligodendrocytes. Here, we could show that the cytotoxic T lymphocytes, which had previously been shown to be pathogenic, were clonally expanded in the CNS of the transgenic mice. The amino acid sequences of the corresponding receptor chains were not identical, yet showed some similarities, which could mean that these clones recognize similar antigens (or epitopes of the same antigen). The knockout of PD-1 in this setting allowed for an analysis of the importance of tissue immune regulation. It became evident that the absence of PD-1 induced a larger number of clonal expansions in the CNS, hinting towards a reduced threshold for clonal disturbance and activation in these T cells. The expansions were, however, not pathogenic by themselves. Only in the presence of tissue damage and an antigenic stimulus (in our case the overexpression of PLP), the PD-1 limitation exacerbated the immune pathogenicity. Therefore, only in the presence of a "tissue damage signal", the dyshomeostasis of T cells lacking PD-1 achieved high pathogenetic relevance. Finally, we investigated the pathogenetic role of CD8 T cells in Rasmussen encephalitis, a rare and chronic neurological disease mainly affecting children. The analysis of the T-cell receptor repertoire in Rasmussen encephalitis patients in the peripheral CD4\(^+\) and CD8\(^+\) T-cell compartments as well as the brain revealed the involvement of T cells in the pathogenicity of this disease. Many clonal expansions in the brain matched CD8\(^+\) T-cell expansions in the periphery on the sequence level. These putatively pathogenic clones could be visualized by immunohistochemistry in the brain and were found in close proximity to astrocytes and neurons. Additionally, the expanded clones could be found in the periphery of patients for at least one year.}, subject = {T-Lymphozyt}, language = {en} }