@phdthesis{DeLira2020, author = {De Lira, Maria Nathalia}, title = {The regulation of T cell metabolism by neutral sphingomyelinase 2}, doi = {10.25972/OPUS-21567}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-215673}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {T cells play an essential role in the immune system. Engaging the T cell receptor (TCR) initiates a cascade of signaling events that activates the T cells. Neutral sphingomyelinase (NSM) is a member of a superfamily of enzymes responsible for the hydrolysis of sphingomyelin into phosphocholine and ceramide. Sphingolipids are essential mediators in signaling cascades involved in apoptosis, proliferation, stress responses, necrosis, inflammation, autophagy, senescence, and differentiation. Upon specific ablation of NSM2, T cells proved to be hyper-responsive to CD3/CD28 co-stimulation, indicating that the enzyme acts to dampen early overshooting activation of these cells. It remained unclear whether a deregulated metabolic activity supports the hyper-reactivity of NSM2 deficient T cells. This work demonstrates that the ablation of NSM2 activity affects the metabolism of the quiescent CD4+ T cells. These accumulate ATP in mitochondria and increase basal glycolytic activity by increasing the basal glucose uptake and GLUT1 receptor expression, which, altogether, raises intracellular ATP levels and boosts cellular respiration. The increased basal metabolic activity is associated with rapid phosphorylation of S6, a mTORC1 target, as well as enhanced elevation total ATP levels within the first hour after CD3/CD28 costimulation. Increased metabolic activity in resting NSM2 deficient T cells does, however, not support sustained stimulated responses. While elevated under steady-state conditions and elevated early after co-stimulation in NSM2 deficient CD4+ T cells, the mTORC1 pathway regulating mitochondria size, oxidative phosphorylation, and ATP production is impaired after 24 hours of stimulation. Taken together, the absence of NSM2 promotes a hyperactive metabolic state in unstimulated CD4+ T cells yet fails to support sustained T cell responses upon antigenic stimulation without affecting T cell survival.}, subject = {T zellen}, language = {en} } @phdthesis{Pedrotti2018, author = {Pedrotti, Lorenzo}, title = {The SnRK1-C/S1-bZIPs network: a signaling hub in Arabidopsis energy metabolism regulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116080}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The control of energy homeostasis is of pivotal importance for all living organisms. In the last years emerged the idea that many stress responses that are apparently unrelated, are actually united by a common increase of the cellular energy demand. Therefore, the so called energy signaling is activated by many kind of stresses and is responsible for the activation of the general stress response. In Arabidopsis thaliana the protein family SnF1- related protein kinases (SnRK1) is involved in the regulation of many physiological processes but is more known for its involvement in the regulation of the energy homeostasis in response to various stresses. To the SnRK1 protein family belong SnRK1.1 (also known as KIN10), SnRK1.2 (KIN11), and SnRK1.3 (KIN12). SnRK1 exerts its function regulating directly the activity of metabolic enzymes or those of key transcription factors (TFs). The only TFs regulated by SnRK1 identified so far is the basic leucine zipper (bZIP) 63. bZIP63 belongs to the C group of bZIPs (C-bZIPs) protein family together with bZIP9, bZIP10, and bZIP25. SnRK1.1 phosphorylates bZIP63 on three amino acids residues, serine (S) 29, S294, and S300. The phosphorylation of tbZIP63 is strongly related to the energy status of the plant, shifting from almost absent during the normal growth to strongly phosphorylated when the plant is exposed to extended dark. bZIPs normally bind the DNA as dimer in order to regulate the expression of their target genes. C-bZIPs preferentially form dimers with S1-bZIPs, constituting the so called C/S1- bZIPs network. The SnRk1 dependent phosphorylation of bZIP63 regulates its activation potential and its dimerization properties. In particular bZIP63 shift its dimerization preferences according to its phosphorylation status. The non-phosphorylated form of bZIP63 dimerize bZIP1, the phosphorylates ones, instead, forms dimer with bZIP1, bZIP11, and bZIP63 its self. Together with bZIP63, S1-bZIPs are important mediator of part of the huge transcriptional reprogramming induced by SnRK1 in response to extended dark. S1-bZIPs regulate, indeed, the expression of 4'000 of the 10'000 SnRK1-regulated genes in response to energy deprivation. In particular S1-bZIPs are very important for the regulation of many genes encoding for enzymes involved in the amino acid metabolism and for their use as alternative energy source. After the exposition for some hours to extended dark, indeed, the plant make use of every energy substrate and amino acids are considered an important energy source together with lipids and proteins. Interestingly, S1- bZIPs regulate the expression of ETFQO. ETFQO is a unique protein that convoglia the electrons provenienti from the branch chain amino acids catabolism into the mitochondrial electron transport chain. The dimer formed between bZIP63 and bZIP2 recruits SnRK1.1 directly on the chromatin of ETFQO promoter. The recruitment of SnRK1 on ETFQO promoter is associated with its acetylation on the lysine 14 of the histone protein 3 (K14H3). This chromatin modification is normally asociated with an euchromatic status of the DNA and therefore with its transcriptional activation. Beside the particular case of the regulation of ETFQO gene, S1-bZIPs are involved in the regulation of many other genes activated in response of different stresses. bZIP1 is for example an important mediator of the salt stress response. In particular bZIP1 regulates the primary C- and N-metabolism. The expression of bZIP1, in response of both salt ans energy stress seems to be regulated by SnRK1, as it is the expression of bZIP53 and bZIP63. Beside its involvement in the regulation of the energy stress response and salt response, SnRK1 is the primary activators of the lipids metabolism during see germination. SnRK1, indeed, controls the expression of CALEOSINs and OLEOSINs. Those proteins are very important for lipids remobilization from oil droplets. Without their expression seed germination and subsequent establishment do not take place because of the absence of fuel to sustain these highly energy costly processes, which entirely depend on the catabolism of seed storages.}, subject = {Ackerschmalwand}, language = {en} } @phdthesis{Ott2013, author = {Ott, Christine Kornelia}, title = {Diverse Aspects of the Sorting and Assembly Machinery in Human Mitochondria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85462}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Mitochondria are organelles of endosymbiotic origin, which play many important roles in eukaryotic cells. Mitochondria are surrounded by two membranes and, considering that most of the mitochondrial proteins are produced in the cytosol, possess import machineries, which transport mitochondria-targeted proteins to their designated location. A special class of outer mitochondrial membrane (OMM) proteins, the β-barrel proteins, require the sorting and assembly machinery (SAM) for their OMM integration. Both mitochondrial β-barrel proteins and the central component of the SAM complex, Sam50, have homologs in gram-negative bacteria. In yeast mitochondria, bacterial β-barrel proteins can be imported and assembled into the OMM. Our group demonstrated that this, however, is not the case for human mitochondria, which import only neisserial β barrel proteins, but not those of Escherichia coli and Salmonella enterica. As a part of this study, I could demonstrate that β-barrel proteins such as Omp85 and PorB of different Neisseria species are targeted to human mitochondria. Interestingly, only proteins belonging to the neisserial Omp85 family were integrated into the OMM, whereas PorB was imported into mitochondria but not assembled. By exchanging parts of homologous neisserial Omp85 and E. coli BamA and, similarly, of neisserial PorB and E. coli OmpC, it could be demonstrated in this work that the mitochondrial import signal of bacterial β barrel proteins cannot be limited to one short linear sequence, but rather secondary structure and protein charge seem to play an important role, as well as specific residues in the last β-strand of Omp85. Omp85 possesses five conserved POTRA domains in its amino-terminal part. This work additionally demonstrated that in human mitochondria, at least two POTRA domains of Omp85 are necessary for membrane integration and functionality of Omp85. In the second part of this work, the influence of Sam50 on the mitochondrial cristae structure was investigated. This work contributed to a study performed by our group in which it was confirmed that Sam50 is present in a high molecular weight complex together with mitofilin, CHCHD3, CHCHD6, DnaJC11, metaxin 1 and metaxin 2. This connection between the inner and outer mitochondrial membrane was shown to be crucial for the maintenance of the mitochondrial cristae structure. In addition, a role of Sam50 in respiratory complex assembly, suggested by a SILAC experiment conducted in our group, could be confirmed by in vitro import studies. An influence of Sam50 not only on respiratory complexes but also on the recently described respiratory complex assembly factor TTC19 was demonstrated. It was shown that TTC19 not only plays a role in complex III assembly as published, but also influences the assembly of respiratory complex IV. Thus, in this part of the work a connection between the OMM protein Sam50 and maintenance of cristae structure, respiratory complex assembly and an assembly factor could be established.}, subject = {Mitochondrien}, language = {en} }