@phdthesis{Wanzek2016, author = {Wanzek, Katharina}, title = {The investigation of the function of repair proteins at G-quadruplex structures in \(Saccharomyces\) \(cerevisiae\) revealed that Mms1 promotes genome stability}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142547}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {G-quadruplex structures are highly stable alternative DNA structures that can, when not properly regulated, impede replication fork progression and cause genome instability (Castillo Bosch et al, 2014; Crabbe et al, 2004; Koole et al, 2014; Kruisselbrink et al, 2008; London et al, 2008; Lopes et al, 2011; Paeschke et al, 2013; Paeschke et al, 2011; Piazza et al, 2015; Piazza et al, 2010; Piazza et al, 2012; Ribeyre et al, 2009; Sabouri et al, 2014; Sarkies et al, 2012; Sarkies et al, 2010; Schiavone et al, 2014; Wu \& Spies, 2016; Zimmer et al, 2016). The aim of this thesis was to identify novel G-quadruplex interacting proteins in Saccharomyces cerevisiae and to unravel their regulatory function at these structures to maintain genome integrity. Mms1 and Rtt101 were identified as G-quadruplex binding proteins in vitro via a pull-down experiment with subsequent mass spectrometry analysis. Rtt101, Mms1 and Mms22, which are all components of an ubiquitin ligase (Rtt101Mms1/Mms22), are important for the progression of the replication fork following fork stalling (Luke et al, 2006; Vaisica et al, 2011; Zaidi et al, 2008). The in vivo binding of endogenously tagged Mms1 to its target regions was analyzed genome-wide using chromatin-immunoprecipitation followed by deep-sequencing. Interestingly, Mms1 bound independently of Mms22 and Rtt101 to G-rich regions that have the potential to form G-quadruplex structures. In vitro, formation of G-quadruplex structures could be shown for the G-rich regions Mms1 bound to. This binding was observed throughout the cell cycle. Furthermore, the deletion of MMS1 caused replication fork stalling as evidenced by increased association of DNA Polymerase 2 at Mms1 dependent sites. A gross chromosomal rearrangement assay revealed that deletion of MMS1 results in a significantly increased genome instability at G-quadruplex motifs compared to G-rich or non-G-rich regions. Additionally, binding of the helicase Pif1, which unwinds G4 structures in vitro (Paeschke et al, 2013; Ribeyre et al, 2009; Sanders, 2010; Wallgren et al, 2016), to Mms1 binding sites was reduced in mms1 cells. The data presented in this thesis, together with published data, suggests a novel mechanistic model in which Mms1 binds to G-quadruplex structures and enables Pif1 association. This allows for replication fork progression and genome integrity.}, subject = {Quadruplex-DNS}, language = {en} } @phdthesis{Karl2016, author = {Karl, Stefan}, title = {Control Centrality in Non-Linear Biological Networks}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150838}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Biological systems such as cells or whole organisms are governed by complex regulatory networks of transcription factors, hormones and other regulators which determine the behavior of the system depending on internal and external stimuli. In mathematical models of these networks, genes are represented by interacting "nodes" whose "value" represents the activity of the gene. Control processes in these regulatory networks are challenging to elucidate and quantify. Previous control centrality metrics, which aim to mathematically capture the ability of individual nodes to control biological systems, have been found to suffer from problems regarding biological plausibility. This thesis presents a new approach to control centrality in biological networks. Three types of network control are distinguished: Total control centrality quantifies the impact of gene mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signaling cascades (e.g control in mouse colon stem cells). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Well-defined network manipulations define all three centralities not only for nodes, but also for the interactions between them, enabling detailed insights into network pathways. The calculation of the new metrics is made possible by substantial computational improvements in the simulation algorithms for several widely used mathematical modeling paradigms for genetic regulatory networks, which are implemented in the regulatory network simulation framework Jimena created for this thesis. Applying the new metrics to biological networks and artificial random networks shows how these mathematical concepts correspond to experimentally verified gene functions and signaling pathways in immunity and cell differentiation. In contrast to controversial previous results even from the Barab{\´a}si group, all results indicate that the ability to control biological networks resides in only few driver nodes characterized by a high number of connections to the rest of the network. Autoregulatory loops strongly increase the controllability of the network, i.e. its ability to control itself, and biological networks are characterized by high controllability in conjunction with high robustness against mutations, a combination that can be achieved best in sparsely connected networks with densities (i.e. connections to nodes ratios) around 2.0 - 3.0. The new concepts are thus considerably narrowing the gap between network science and biology and can be used in various areas such as system modeling, plausibility trials and system analyses. Medical applications discussed in this thesis include the search for oncogenes and pharmacological targets, as well their functional characterization.}, subject = {Bioinformatik}, language = {en} } @phdthesis{Bertho2016, author = {Bertho, Sylvain}, title = {Biochemical and molecular characterization of an original master sex determining gene in Salmonids}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139130}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Sexual development is a fundamental and versatile process that shapes animal morphology, physiology and behavior. The underlying developmental process is composed of the sex determination and the sex differentiation. Sex determination mechanisms are extremely labile among taxa. The initial triggers of the sex determination process are often genetics called sex determining genes. These genes are expressed in the bipotential gonad and tilt the balance to a developmental program allowing the differentiation of either a testis or an ovary. Fish represent a large and fascinating vertebrate group to study both sex determination and sex differentiation mechanisms. To date, among the known sex determining genes, three gene families namely sox, dmrt and TGF-β factors govern this developmental program. As exception to this rule, sdY "sexually dimorphic on the Y" does not belong to one of these families as it comes from the duplication / evolution of an ancestor gene related to immunity, i.e., the interferon related factor 9, irf9. sdY is the master sex determining gene in salmonids, a group of fishes that include species such as rainbow trout and Atlantic salmon. The present study was aimed to firstly characterize the features of SdY protein. Results indicate that SdY is predominantly localized in the cytoplasm tested in various fish and mammalian cell lines and confirmed by different methods. Predictive in silico analysis revealed that SdY is composed of a β-sandwich core surrounded by three α-helices as well specific characteristics conferring a putative protein-protein interaction site. Secondly, the study was aimed to understand how SdY could trigger testicular differentiation. SdY is a truncated divergent version of Irf9 that has a conserved protein-protein domain but lost the DNA interaction domain of its ancestor gene. It was then hypothesized that SdY could initiate testicular differentiation by protein-protein interactions. To evaluate this we first conducted a yeast-two-hybrid screen that revealed a high proportion of transcription factors including fox proteins. Using various biochemical and cellular methods we confirm an interaction between SdY and Foxl2, a major transcription factor involved in ovarian differentiation and identity maintenance. Interestingly, the interaction of SdY with Foxl2 leads to nuclear translocation of SdY from the cytoplasm. Furthermore, this SdY translocation mechanism was found to be specific to fish Foxl2 and to a lesser extend Foxl3 and not other Fox proteins or mammalian FoxL2. In addition, we found that this interaction allows the stabilization of SdY and prevents its degradation. Finally, to better decipher SdY action we used as a model a mutated version of SdY that was identified in XY females of Chinook salmon natural population. Results show that this mutation induces a local conformation defect obviously leading to a misfolded protein and a quick degradation. Moreover, the mutated version compromised the interaction with Foxl2 defining a minimal threshold to induce testicular differentiation. Altogether results from my thesis propose that SdY would trigger testicular differentiation in salmonids by preventing Foxl2 to promote ovarian differentiation. Further research should be now carried out on how this interaction of SdY and Foxl2 acts in-vivo.}, subject = {Lachsartige }, language = {en} } @phdthesis{Lorenzin2016, author = {Lorenzin, Francesca}, title = {Regulation of transcription by MYC - DNA binding and target genes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {MYC is a transcription factor, whose expression is elevated or deregulated in many human cancers (up to 70\%) and is often associated with aggressive and poorly differentiated tumors. Although MYC is extensively studied, discrepancies have emerged about how this transcription factor works. In primary lymphocytes, MYC promotes transcriptional amplification of virtually all genes with an open promoter, whereas in tumor cells MYC regulates specific sets of genes that have significant prognostic value. Furthermore, the set of target genes that distinguish MYC's physiological function from the pathological/oncogenic one, whether it exists or not, has not been fully understood yet. In this study, it could be shown that MYC protein levels within a cell and promoter affinity (determined by E-box presence or interaction with other proteins) of target genes toward MYC are important factors that influence MYC activity. At low levels, MYC can amplify a certain transcriptional program, which includes high affinity binding sites, whereas at high levels MYC leads to the specific up- and down regulation of genes with low affinity. Moreover, the promoter affinity characterizes different sets of target genes which can be distinguished in the physiological or oncogenic MYC signatures. MYC-mediated repression requires higher MYC levels than activation and formation of a complex with MIZ1 is necessary for inhibiting expression of a subset of MYC target genes.}, subject = {MYC}, language = {en} } @phdthesis{Kutscher2016, author = {Kutscher, Marika}, title = {Novel Approaches to Antimicrobial Therapy of Pneumonia using Antibiotics and Therapeutic Antibodies}, edition = {1. Aufl.}, publisher = {Verlag Dr. Hut}, address = {M{\"u}nchen}, isbn = {978-3-8439-2784-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138475}, school = {Universit{\"a}t W{\"u}rzburg}, pages = {176}, year = {2016}, abstract = {Nosocomial pneumonia is mostly caused by methicillin-resistant Staphylococcus aureus (MRSA). However, the standard antibiotic therapy is affected by increasing emergence of bacterial resistance. Therefore, novel therapeutic options are in high demand. New antimicrobial agents alone cannot handle the problem of increasing bacterial resistance but innovative drug delivery strategies and fast identification of infection causing pathogens are required to diminish bacterial resistance development. A very promising approach to improve the therapy of pneumonia is presented by local drug delivery to the lung. This application method enables high local drug concentrations in the lung leading to shorter application of antibiotics and hence reduces the risk of resistance development. Furthermore, the systemic concentration is lowered reducing the emergence of adverse effects. Therefore, in this thesis several approaches to improve the therapy of MRSA pneumonia are studied. One approach to achieve an efficient local delivery of antibiotics are nano-sized drug delivery systems which enable the nebulization of poorly-soluble antibiotics and can lead to even higher local drug concentrations due to their small size since nanoparticles improve mucus penetration and decrease phagocytosis by alveolar macrophages. Here, an analytical setup was developed that facilitates the identification of optimal preparation conditions for drug polyelectrolyte nanoplexes. Another promising approach to support antimicrobial therapy of pneumonia is presented by antibody-based immunotherapy. Since the stability of the antibody and hence its therapeutic activity are endangered during production, transport, storage, and application, a stabilizing formulation was developed for hUK-66, an antibody targeting surface antigens of S. aureus. Furthermore, nebulization of this formulated monoclonal antibody was studied to enable local application. Finally, the immunotherapeutic efficacy of the nebulized hUK-66 formulation was investigated in an animal in vivo study. Furthermore, rapid identification of the infection triggering pathogen is very important. The selective detection of S. aureus was achieved using optical planar Bragg grating sensors functionalized with hUK-66. In addition, the reusability of this system was studied applying a surface functionalization based on the cross-linker SPDP which enables a reversible fixation of the antibody.}, subject = {Lungenentz{\"u}ndung}, language = {en} } @phdthesis{Maurus2016, author = {Maurus, Katja}, title = {Melanoma Maintenance by the AP1 Transcription Factor FOSL1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142995}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Identifying novel driver genes in cancer remains a crucial step towards development of new therapeutic approaches and the basic understanding of the disease. This work describes the impact of the AP1 transcription activator component FOSL1 on melanoma maintenance. FOSL1 is strongly upregulated during the progression of melanoma and the protein abundance is highest in metastases. I found that the regulation of FOSL1 is strongly dependent on ERK1/2- and PI3K- signaling, two pathways frequently activated in melanoma. Moreover, the involvement of p53 in FOSL1 regulation in melanoma was investigated. Elevated levels of the tumor suppressor led to decreased FOSL1 protein levels in a miR34a/miR34c- dependent manner. The benefit of elevated FOSL1 amounts in human melanoma cell lines was analyzed by overexpression of FOSL1 in cell lines with low endogenous FOSL1 levels. Enhanced levels of FOSL1 had several pro-tumorigenic effects in human melanoma cell lines. Besides increased proliferation and migration rates, FOSL1 overexpression induced the colony forming ability of the cells. Additionally, FOSL1 was necessary for anchorage independent growth in 3D cell cultures. Microarray analyses revealed novel downstream effectors of FOSL1. On the one hand, FOSL1 was able to induce the transcription of different neuron-related genes, such as NEFL, NRP1 and TUBB3. On the other hand, FOSL1 influenced the transcription of DCT, a melanocyte specific gene, in dependence of the differentiation of the melanoma cell line, indicating dedifferentiation. Furthermore, FOSL1 induced the transcription of HMGA1, a chromatin remodeling protein with reprogramming ability, which is characteristic for stem cells. Consequently, the influence of HMGA1 on melanoma maintenance was investigated. In addition to decreased proliferation and reduced anoikis resistance, HMGA1 knockdown reduced melanoma cell survival. Interestingly, the FOSL1 induced pro-tumorigenic effects were demonstrated to be dependent on the HMGA1 level. HMGA1 manipulation reversed FOSL1 induced proliferation and colony forming ability, as well as the anchorage independent growth effect. In conclusion, I could show that additional FOSL1 confers a clear growth benefit to melanoma cells. This benefit is attributed to the induction of stem cell determinants, but can be blocked by the inhibition of the ERK1/2 or PI3K signaling pathways.}, subject = {Melanom}, language = {en} } @phdthesis{Kessel2016, author = {Kessel, Maximilian}, title = {HgTe shells on CdTe nanowires: A low-dimensional topological insulator from crystal growth to quantum transport}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149069}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {A novel growth method has been developed, allowing for the growth of strained HgTe shells on CdTe nanowires (NWs). The growth of CdTe-HgTe core-shell NWs required high attention in controlling basic parameters like substrate temperature and the intensity of supplied material fluxes. The difficulties in finding optimized growth conditions have been successfully overcome in this work. We found the lateral redistribution of liquid growth seeds with a ZnTe growth start to be crucial to trigger vertical CdTe NW growth. Single crystalline zinc blende CdTe NWs grew, oriented along [111]B. The substrate temperature was the most critical parameter to achieve straight and long wires. In order to adjust it, the growth was monitored by reflection high-energy electron diffraction, which was used for fine tuning of the temperature over time in each growth run individually. For optimized growth conditions, a periodic diffraction pattern allowed for the detailed analysis of atomic arrangement on the surfaces and in the bulk. The ability to do so reflected the high crystal quality and ensemble uniformity of our CdTe NWs. The NW sides were formed by twelve stable, low-index crystalline facets. We observed two types stepped and polar sides, separated by in total six flat and non-polar facets. The high crystalline quality of the cores allowed to grow epitaxial HgTe shells around. We reported on two different heterostructure geometries. In the first one, the CdTe NWs exhibit a closed HgTe shell, while for the second one, the CdTe NWs are overgrown mainly on one side. Scanning electron microscopy and scanning transmission electron microscopy confirmed, that many of the core-shell NWs are single crystalline zinc blende and have a high uniformity. The symmetry of the zinc blende unit cell was reduced by residual lattice strain. We used high-resolution X-ray diffraction to reveal the strain level caused by the small lattice mismatch in the heterostructures. Shear strain has been induced by the stepped hetero-interface, thereby stretching the lattice of the HgTe shell by 0.06 \% along a direction oriented with an angle of 35 ° to the interface. The different heterostructures obtained, were the base for further investigation of quasi-one-dimensional crystallites of HgTe. We therefore developed methods to reliably manipulate, align, localize and contact individual NWs, in order to characterize the charge transport in our samples. Bare CdTe cores were insulating, while the HgTe shells were conducting. At low temperature we found the mean free path of charge carriers to be smaller, but the phase coherence length to be larger than the sample size of several hundred nanometers. We observed universal conductance fluctuations and therefore drew the conclusion, that the trajectories of charge carriers are defined by elastic backscattering at randomly distributed scattering sites. When contacted with superconducting leads, we saw induced superconductivity, multiple Andreev reflections and the associated excess current. Thus, we achieved HgTe/superconductor interfaces with high interfacial transparency. In addition, we reported on the appearance of peaks in differential resistance at Delta/e for HgTe-NW/superconductor and 2*Delta/e for superconductor/HgTe-NW/superconductor junctions, which is possibly related to unconventional pairing at the HgTe/superconductor interface. We noticed that the great advantage of our self-organized growth is the possibility to employ the metallic droplet, formerly seeding the NW growth, as a superconducting contact. The insulating wire cores with a metallic droplet at the tip have been overgrown with HgTe in a fully in-situ process. A very high interface quality was achieved in this case.}, subject = {Quecksilbertellurid}, language = {en} } @phdthesis{Dagvadorj2016, author = {Dagvadorj, Nergui}, title = {Improvement of T-cell response against WT1-overexpressing leukemia by newly developed anti-hDEC205-WT1 antibody fusion proteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149098}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Wilms tumor protein 1 (WT1) is a suitable target to develop an immunotherapeutic approach against high risk acute myeloid leukemia (AML), particularly their relapse after allogeneic hematopoietic stem cell transplantation (HSCT). As an intracellular protein traversing between nucleus and cytoplasm, recombinant expression of WT1 is difficult. Therefore, an induction of WT1-specific T-cell responses is mostly based on peptide vaccination as well as dendritic cell (DC) electroporation with mRNA encoding full-length protein to mount WT1-derived peptide variations presented to T cells. Alternatively, the WT1 peptide presentation could be broadened by forcing receptor-mediated endocytosis of DCs. In this study, antibody fusion proteins consisting of an antibody specific to the human DEC205 endocytic receptor and various fragments of WT1 (anti-hDEC205-WT1) were generated for a potential DC-targeted recombinant WT1 vaccine. Anti-hDEC205-WT1 antibody fusion proteins containing full-length or major parts of WT1 were not efficiently expressed and secreted due to their poor solubility and secretory capacity. However, small fragment-containing variants: anti-hDEC205-WT110-35, anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 were obtained in good yields. Since three of these fusion proteins contain the most of the known immunogenic epitopes in their sequences, the anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 were tested for their T-cell stimulatory capacities. Mature monocyte-derived DCs loaded with anti-hDEC205-WT191-138 could induce ex vivo T-cell responses in 12 of 16 blood samples collected from either healthy or HSC transplanted individuals compared to included controls (P < 0.01). Furthermore, these T cells could kill WT1-overexpressing THP-1 leukemia cells in vitro after expansion. In conclusion, alongside proving the difficulty in expression and purification of intracellular WT1 as a vaccine protein, our results from this work introduce an alternative therapeutic vaccine approach to improve an anti-leukemia immune response in the context of allogeneic HSCT and potentially beyond.}, subject = {Akute myeloische Leuk{\"a}mie}, language = {en} } @phdthesis{Fella2016, author = {Fella, Christian}, title = {High-Resolution X-ray Imaging based on a Liquid-Metal-Jet-Source with and without X-ray Optics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145938}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of everincreasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding and quality assurance of microscopic species, in particular as it allows reconstructing three-dimensional data sets of the whole sample's volumevia computed tomography (CT). The following thesis describes the conceptualization, design, construction and characterization of a compact laboratory-based X-ray microscope in the hard X-ray regime around 9 keV, corresponding to a wavelength of 0.134 nm. Hereby, the main focus is on the optimization of resolution and contrast at relatively short exposure times. For this, a novel liquid-metal-jet anode source is the basis. Such only recently commercially available X-ray source reaches a higher brightness than other conventional laboratory sources, i.e. the number of emitted photons (X-ray quanta) per area and solid angle is exceptionally high. This is important in order to reach low exposure times. The reason for such high brightness is the usage of the rapidly renewing anode out of liquid metal which enables an effective dissipation of heat, normally limiting the creation of high intensities on a small area. In order to cover a broad range of different samples, the microscope can be operated in two modes. In the "micro-CT mode", small pixels are realized with a crystal-scintillator and an optical microscope via shadow projection geometry. Therefore, the resolution is limited by the emitted wavelength of the scintillator, as well as the blurring of the screen. However, samples in the millimeter range can be scanned routinely with low exposure times. Additionally, this mode is optimized with respect to in-line phase contrast, where edges of an object are enhanced and thus better visible. In the second "nano-CT mode", a higher resolution can be reached via X-ray lenses. However, their production process is due to the physical properties of the hard X-ray range - namely high absorption and low diffraction - extremely difficult, leading typically to low performances. In combination with a low brightness, this leads to long exposure times and high requirements in terms of stability, which is one of the key problems of laboratory-based X-ray microscopy. With the here-developed setup and the high brightness of its source, structures down to 150 nm are resolved at moderate exposure times (several minutes per image) and nano-CTs can be obtained.}, subject = {computed tomography}, language = {en} } @phdthesis{Muenchow2016, author = {M{\"u}nchow, Hannes}, title = {I feel, therefore I learn - Effectiveness of affect induction interventions and possible covariates on learning outcomes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148432}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Affective states in the context of learning and achievement can influence the learning process essentially. The impact of affective states can be both directly on the learning performance and indirectly mediated via, for example, motivational processes. Positive activating affect is often associated with increased memory skills as well as advantages in creative problem solving. Negative activating affect on the other hand is regarded to impair learning outcomes because of promoting task-irrelevant thinking. While these relationships were found to be relatively stable in correlation studies, causal relationships have been examined rarely so far. This dissertation aims to investigate the effects of positive and negative affective states in multimedia learning settings and to identify potential moderating factors. Therefore, three experimental empirical studies on university students were conducted. In Experiment 1, N = 57 university students were randomly allocated to either a positive or negative affect induction group. Affects were elicited using short film clips. After a 20-minute learning phase in a hypertext-based multimedia learning environment on "functional neuroanatomy" the learners' knowledge as well as transfer performance were measured. It was assumed that inducing positive activating affect should enhance learning performance. Eliciting negative activating affect on the other hand should impair learning performance. However, it was found that the induction of negative activating affect prior to the learning phase resulted in slight deteriorations in knowledge. Contrary to the assumptions, inducing positive activating affect before the learning phase did not improve learning performance. Experiment 2 induced positive activating affect directly during learning. To induce affective states during the entire duration of the learning phase, Experiment 2 used an emotional design paradigm. Therefore, N = 111 university students were randomly assigned to learn either in an affect inducing multimedia learning environment (use of warm colours and round shapes) or an affectively neutral counterpart (using shades of grey and angular shapes) on the same topic as in Experiment 1. Again, knowledge as well as transfer performance were measured after learning for 20 minutes. In addition, positive and negative affective states were measured before and after learning. Complex interaction patterns between the treatment and initial affective states were found. Specifically, learners with high levels of positive affect before learning showed better transfer performance when they learned in the affect inducing learning environment. Regarding knowledge, those participants who reported high levels of negative activating affect prior to the learning period performed worse. However, the effect on knowledge did not occur for those students learning in the affect inducing learning environment. For knowledge, the treatment therefore protected against poorer performance due to high levels of negative affective states. Results of Experiment 2 showed that the induction of positive activating affect influenced learning performance positively when taking into account affective states prior to the learning phase. In order to confirm these interaction effects, a conceptual replication of the previous experiment was conducted in Experiment 3. Experiment 3 largely retained the former study design, but changed the learning materials and tests used. Analogous to Experiment 2, N = 145 university students learning for 20 minutes in either an affect inducing or an affectively neutral multimedia learning environment on "eukaryotic cell". To strengthen the treatment, Experiment 3 also used anthropomorphic design elements to induce affective states next to warm colours and round shapes. Moreover, in order to assess the change in affective states more exactly, an additional measurement of positive and negative affective states after half of the learning time was inserted. Knowledge and transfer were assessed again to measure learning performance. The learners' memory skills were used as an additional learning outcome. To control the influence of potential confounding variables, the participants' general and current achievement motivation as well as interest, and emotion regulation skills were measured. Contrary to the assumptions, Experiment 3 could not confirm the interaction effects of Experiment 2. Instead, there was a significant impact of positive activating affect prior to the learning phase on transfer, irrespective of the learners' group affiliation. This effect was further independent of the control variables that were measured. Nevertheless, the results of Experiment 3 fit into the picture of findings regarding "emotional design" in hypermedia learning settings. To date, the few publications that have used this approach propose heterogeneous results, even when using identical materials and procedures.}, subject = {Affekt}, language = {en} } @phdthesis{Herweg2016, author = {Herweg, Andreas}, title = {Beyond the state of the art, towards intuitive and reliable non-visual Brain-Computer-Interfacing}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133447}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {For the present work three main goals were formulated: goal 1 To design a tactile BCI used for mobility which is intuitive (G1.1), reliable and fast while being usable by participants aged 50 years and above. goal 2 To design an auditory BCI used for communication which is intuitive and reliable. goal 3 To examine the effects of training on tactile and auditory BCI performance. Three studies were performed to achieve these goals. In the first study nine participants aged above 50 years performed a five-session training after which eight participants were able to navigate a virtual wheelchair with mean accuracy above 95\% and an ITR above 20 bits / min. In the second study 15 participants, four of them endusers with motor-impairment, were able to communicate meaningful with high accuracies using an auditory BCI. In the third study nine healthy and nine visually impaired participants (regarded as sensory experts for non-visual perception) performed tactile, auditory and visual (for healthy participants only) copy tasks. Participants with trained perception significantly outperformed control participants for tactile but not for auditory performance. Tactile performance of sensory experts was on equal levels as the visual performance of control participants. We were able to demonstrate viability of intuitive gazeindependent tactile and auditory BCI. Our tactile BCI performed on levels similar to those of visual BCI, outperforming current tactile BCI protocols. Furthermore, we were able to demonstrate significant beneficial effect of training on tactile BCI performance. Our results demonstrate previously untapped potential for tactile BCI and avenues for future research in the field of gaze-independent BCI.}, subject = {Gehirn-Computer-Schnittstelle}, language = {en} } @phdthesis{Forster2016, author = {Forster, Johannes}, title = {Variational Approach to the Modeling and Analysis of Magnetoelastic Materials}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147226}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {This doctoral thesis is concerned with the mathematical modeling of magnetoelastic materials and the analysis of PDE systems describing these materials and obtained from a variational approach. The purpose is to capture the behavior of elastic particles that are not only magnetic but exhibit a magnetic domain structure which is well described by the micromagnetic energy and the Landau-Lifshitz-Gilbert equation of the magnetization. The equation of motion for the material's velocity is derived in a continuum mechanical setting from an energy ansatz. In the modeling process, the focus is on the interplay between Lagrangian and Eulerian coordinate systems to combine elasticity and magnetism in one model without the assumption of small deformations. The resulting general PDE system is simplified using special assumptions. Existence of weak solutions is proved for two variants of the PDE system, one including gradient flow dynamics on the magnetization, and the other featuring the Landau-Lifshitz-Gilbert equation. The proof is based on a Galerkin method and a fixed point argument. The analysis of the PDE system with the Landau-Lifshitz-Gilbert equation uses a more involved approach to obtain weak solutions based on G. Carbou and P. Fabrie 2001.}, subject = {Magnetoelastizit{\"a}t}, language = {en} } @phdthesis{Ruf2016, author = {Ruf, Franziska}, title = {The circadian regulation of eclosion in \(Drosophila\) \(melanogaster\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146265}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Eclosion is the emergence of an adult insect from the pupal case at the end of development. In the fruit fly Drosophila melanogaster, eclosion is a circadian clock-gated event and is regulated by various peptides. When studied on the population level, eclosion reveals a clear rhythmicity with a peak at the beginning of the light-phase that persists also under constant conditions. It is a long standing hypothesis that eclosion gating to the morning hours with more humid conditions is an adaption to reduce water loss and increase the survival. Eclosion behavior, including the motor pattern required for the fly to hatch out of the puparium, is orchestrated by a well-characterized cascade of peptides. The main components are ecdysis-triggering hormone (ETH), eclosion hormone (EH) and crustacean cardioactive peptide (CCAP). The molt is initiated by a peak level and pupal ecdysis by a subsequent decline of the ecdysteroid ecdysone. Ecdysteroids are produced by the prothoracic gland (PG), an endocrine tissue that contains a peripheral clock and degenerates shortly after eclosion. Production and release of ecdysteroids are regulated by the prothoracicotropic hormone (PTTH). Although many aspects of the circadian clock and the peptidergic control of the eclosion behavior are known, it still remains unclear how both systems are interconnected. The aim of this dissertation research was to dissect this connection and evaluate the importance of different Zeitgebers on eclosion rhythmicity under natural conditions. Potential interactions between the central clock and the peptides regulating ecdysis motor behavior were evaluated by analyzing the influence of CCAP on eclosion rhythmicity. Ablation and silencing of CCAP neurons, as well as CCAP null-mutation did not affect eclosion rhythmicity under either light or temperature entrainment nor under natural conditions. To dissect the connection between the central and the peripheral clock, PTTH neurons were ablated. Monitoring eclosion under light and temperature entrainment revealed that eclosion became arrhythmic under constant conditions. However, qPCR expression analysis revealed no evidence for cycling of Ptth mRNA in pharate flies. To test for a connection with pigment-dispersing factor (PDF)-expressing neurons, the PDF receptor (PDFR) and short neuropeptide F receptor (sNPFR) were knocked down in the PTTH neurons. Knockdown of sNPFR, but not PDFR, resulted in arrhythmic eclosion under constant darkness conditions. PCR analysis of the PTTH receptor, Torso, revealed its expression in the PG and the gonads, but not in the brain or eyes, of pharate flies. Knockdown of torso in the PG lead to arrhythmicity under constant conditions, which provides strong evidence for the specific effect of PTTH on the PG. These results suggest connections from the PDF positive lateral neurons to the PTTH neurons via sNPF signaling, and to the PG via PTTH and Torso. This interaction presumably couples the period of the peripheral clock in the PG to that of the central clock in the brain. To identify a starting signal for eclosion and possible further candidates in the regulation of eclosion behavior, chemically defined peptidergic and aminergic neurons were optogenetically activated in pharate pupae via ChR2-XXL. This screen approach revealed two candidates for the regulation of eclosion behavior: Dromyosuppressin (DMS) and myo-inhibitory peptides (MIP). However, ablation of DMS neurons did not affect eclosion rhythmicity or success and the exact function of MIP must be evaluated in future studies. To assess the importance of the clock and of possible Zeitgebers in nature, eclosion of the wildtype Canton S and the clock mutant per01 and the PDF signaling mutants pdf01 and han5304 was monitored under natural conditions. For this purpose, the W{\"u}rzburg eclosion monitor (WEclMon) was developed, which is a new open monitoring system that allows direct exposure of pupae to the environment. A general decline of rhythmicity under natural conditions compared to laboratory conditions was observed in all tested strains. While the wildtype and the pdf01 and han5304 mutants stayed weakly rhythmic, the per01 mutant flies eclosed mostly arrhythmic. PDF and its receptor (PDFR encoded by han) are required for the synchronization of the clock network and functional loss can obviously be compensated by a persisting synchronization to external Zeitgebers. The loss of the central clock protein PER, however, lead to a non-functional clock and revealed the absolute importance of the clock for eclosion rhythmicity. To quantitatively analyze the effect of the clock and abiotic factors on eclosion rhythmicity, a statistical model was developed in cooperation with Oliver Mitesser and Thomas Hovestadt. The modelling results confirmed the clock as the most important factor for eclosion rhythmicity. Moreover, temperature was found to have the strongest effect on the actual shape of the daily emergence pattern, while light has only minor effects. Relative humidity could be excluded as Zeitgeber for eclosion and therefore was not further analyzed. Taken together, the present dissertation identified the so far unknown connection between the central and peripheral clock regulating eclosion. Furthermore, a new method for the analysis of eclosion rhythms under natural conditions was established and the necessity of a functional clock for rhythmic eclosion even in the presence of multiple Zeitgebers was shown.}, subject = {Taufliege}, language = {en} } @phdthesis{Blaettner2016, author = {Bl{\"a}ttner, Sebastian}, title = {The role of the non-ribosomal peptide synthetase AusAB and its product phevalin in intracellular virulence of Staphylococcus aureus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146662}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Staphylococcus aureus is a prevalent commensal bacterium which represents one of the leading causes in health care-associated bacterial infections worldwide and can cause a variety of different diseases ranging from simple abscesses to severe and life threatening infections including pneumonia, osteomyelitis and sepsis. In recent times multi-resistant strains have emerged, causing severe problems in nosocomial as well as community-acquired (CA) infection settings, especially in the United States (USA). Therefore S. aureus has been termed as a superbug by the WHO, underlining the severe health risk originating from it. Today, infections in the USA are dominated by S. aureus genotypes which are classified as USA300 and USA400, respectively. Strains of genotype USA300 are responsible for about 70\% of the CA infections. The molecular mechanisms which render S. aureus such an effective pathogen are still not understood in its entirety. For decades S. aureus was thought to be a strictly extracellular pathogen relying on pore-forming toxins like α-hemolysin to damage human cells and tissue. Only recently it has been shown that S. aureus can enter non-professional phagocytes, using adhesins like the fibronectin-binding proteins which mediate an endocytotic uptake into the host cells. The bacteria are consequently localized to endosomes, where the degradation of enclosed bacterial cells through phagosome maturation would eventually occur. S. aureus can avoid degradation, and translocate to the cellular cytoplasm, where it can replicate. The ability to cause this so-called phagosomal escape has mainly been attributed to a family of amphiphilic peptides called phenol soluble modulins (PSMs), but as studies have shown, they are not sufficient. In this work I used a transposon mutant library in combination with automated fluorescence microscopy to screen for genes involved in the phagosomal escape process and intracellular survival of S. aureus. I thereby identified a number of genes, including a non-ribosomal peptide synthetase (NRPS). The NRPS, encoded by the genes ausA and ausB, produces two types of small peptides, phevalin and tyrvalin. Mutations in the ausAB genes lead to a drastic decrease in phagosomal escape rates in epithelial cells, which were readily restored by genetic complementation in trans as well as by supplementation of synthetic phevalin. In leukocytes, phevalin interferes with calcium fluxes and activation of neutrophils and promotes cytotoxicity of intracellular bacteria in both, macrophages and neutrophils. Further ausAB is involved in survival and virulence of the bacterium during mouse lung pneumoniae. The here presented data demonstrates the contribution of the bacterial cyclic dipeptide phevalin to S. aureus virulence and suggests, that phevalin directly acts on a host cell target to promote cytotoxicity of intracellular bacteria.}, subject = {Staphylococcus aureus}, language = {en} } @phdthesis{Jung2016, author = {Jung, Lisa Anna}, title = {Targeting MYC Function as a Strategy for Tumor Therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146993}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {A large fraction of human tumors exhibits aberrant expression of the oncoprotein MYC. As a transcription factor regulating various cellular processes, MYC is also crucially involved in normal development. Direct targeting of MYC has been a major challenge for molecular cancer drug discovery. The proof of principle that its inhibition is nevertheless feasible came from in vivo studies using a dominant-negative allele of MYC termed OmoMYC. Systemic expression of OmoMYC triggered long-term tumor regression with mild and fully reversible side effects on normal tissues. In this study, OmoMYC's mode of action was investigated combining methods of structural biology and functional genomics to elucidate how it is able to preferentially affect oncogenic functions of MYC. The crystal structure of the OmoMYC homodimer, both in the free and the E-box-bound state, was determined, which revealed that OmoMYC forms a stable homodimer, and as such, recognizes DNA via the same base-specific DNA contacts as the MYC/MAX heterodimer. OmoMYC binds DNA with an equally high affinity as MYC/MAX complexes. RNA-sequencing showed that OmoMYC blunts both MYC-dependent transcriptional activation and repression. Genome-wide DNA-binding studies using chromatin immunoprecipitation followed by high-throughput sequencing revealed that OmoMYC competes with MYC/MAX complexes on chromatin, thereby reducing their occupancy at consensus DNA binding sites. The most prominent decrease in MYC binding was seen at low-affinity promoters, which were invaded by MYC at oncogenic levels. Strikingly, gene set enrichment analyses using OmoMYC-regulated genes enabled the identification of tumor subgroups with high MYC levels in multiple tumor entities. Together with a targeted shRNA screen, this identified novel targets for the eradication of MYC-driven tumors, such as ATAD3A, BOP1, and ADRM1. In summary, the findings suggest that OmoMYC specifically inhibits tumor cell growth by attenuating the expression of rate-limiting proteins in cellular processes that respond to elevated levels of MYC protein using a DNA-competitive mechanism. This opens up novel strategies to target oncogenic MYC functions for tumor therapy.}, subject = {Myc}, language = {en} } @phdthesis{Herrmann2016, author = {Herrmann, Oliver}, title = {Graphene-based single-electron and hybrid devices, their lithography, and their transport properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146924}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {This work explores three different aspects of graphene, a single-layer of carbon atoms arranged in a hexagonal lattice, with regards to its usage in future electronic devices; for instance in the context of quantum information processing. For a long time graphene was believed to be thermodynamically unstable. The discovery of this strictly two-dimensional material completed the family of carbon based structures, which had already been subject of intensive research with focus on zero-dimensional fullerenes and one-dimensional carbon nanotubes. Within only a few years of its discovery, the field of graphene related research has grown into one of today's most diverse and prolific areas in condensed matter physics, highlighted by the award of the 2010 Nobel Prize in Physics to A.K. Geim and K. Noveselov for "their groundbreaking experiments regarding the two-dimensional material graphene". From the point of view of an experimental physicist interested in the electronic properties of a material system, the most intriguing characteristic of graphene is found in the Dirac-like nature of its charge carriers, a peculiar fact that distinguishes graphene from all other known standard semiconductors. The dynamics of charge carriers close to zero energy are described by a linear energy dispersion relation, as opposed to a parabolic one, which can be understood as a result of the underlying lattice symmetry causing them to behave like massless relativistic particles. This fundamentally different behavior can be expected to lead to the observation of completely new phenomena or the occurrence of deviations in well-known effects. Following a brief introduction of the material system in chapter 2, we present our work studying the effect of induced superconductivity in mesoscopic graphene Josephson junctions by proximity to superconducting contacts in chapter 3. We explore the use of Nb as the superconducting material driven by the lack of high critical temperature and high critical magnetic field superconductor technology in graphene devices at that time. Characterization of sputter-deposited Nb films yield a critical transition temperature of \(T_{C}\sim 8{\rm \,mK}\). A prerequisite for successful device operation is a high interface quality between graphene and the superconductor. In this context we identify the use of an Ti as interfacial layer and incorporate its use by default in our lithography process. Overall we are able to increase the interface transparency to values as high as \(85\\%\). With the prospect of interesting effects in the ballistic regime we try to enhance the electronic quality of our Josephson junction devices by substrate engineering, yet with limited success. We achieve moderate charge carrier mobilities of up to \(7000{\rm \,cm^2/Vs}\) on a graphene/Boron-nitride heterostructure (fabrication details are covered in chapter 5) putting the junction in the diffusive regime (\(L_{device}