@phdthesis{Hauptstein2022, author = {Hauptstein, Julia}, title = {Hyaluronic Acid-based Multifunctional Bioinks for 3D Bioprinting of Mesenchymal Stromal Cells for Cartilage Regeneration}, doi = {10.25972/OPUS-26068}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260681}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Articular cartilage is a highly specialized tissue which provides a lubricated gliding surface in joints and thereby enables low-friction movement. If damaged once it has a very low intrinsic healing capacity and there is still no treatment in the clinic which can restore healthy cartilage tissue. 3D biofabrication presents a promising perspective in the field by combining healthy cells and bioactive ink materials. Thereby, the composition of the applied bioink is crucial for defect restoration, as it needs to have the physical properties for the fabrication process and also suitable chemical cues to provide a supportive environment for embedded cells. In the last years, ink compositions with high polymer contents and crosslink densities were frequently used to provide 3D printability and construct stability. But these dense polymeric networks were often associated with restricted bioactivity and impaired cell processes like differentiation and the distribution of newly produced extracellular matrix (ECM), which is especially important in the field of cartilage engineering. Therefore, the aim of this thesis was the development of hyaluronic acid (HA)-based bioinks with a reduced polymer content which are 3D printable and additionally facilitate chondrogenic differentiation of mesenchymal stromal cells (MSCs) and the homogeneous distribution of newly produced ECM. Starting from not-printable hydrogels with high polymer contents and restricted bioactivity, distinct stepwise improvements were achieved regarding stand-alone 3D printability as well as MSC differentiation and homogeneous ECM distribution. All newly developed inks in this thesis made a valuable contribution in the field of cartilage regeneration and represent promising approaches for potential clinical applications. The underlying mechanisms and established ink design criteria can further be applied to other biofabricated tissues, emphasizing their importance also in a more general research setting.}, subject = {Hyalurons{\"a}ure}, language = {en} } @phdthesis{Dodt2021, author = {Dodt, Katharina Anna}, title = {Monitoring enzyme activity by using mass-encoded peptides and multiplexed detection}, doi = {10.25972/OPUS-22937}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229377}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Cell culture models are helpful tools to study inflammatory diseases, like rheumatoid arthritis (RA), osteoarthritis (OA), arteriosclerosis or asthma, which are linked to increased matrix metalloproteinase (MMP) activity. Such cell culture models often focus on the secretion of cytokines and growth factors or the direct effects of disease on tissue destruction. Even though the crucial role of MMPs in inflammatory diseases is known, the results of MMP studies are contradictious and the use of MMPs as biomarkers is inconsistent. MMPs play an important role in disease pathology, as they are involved in elastin degradation in the walls of alveoli in chronic obstructive pulmonary disease (COPD), tumor angiogenesis and metastasis and in cartilage and bone degradation in arthropathies. In RA and OA MMPs are secreted by osteocytes, synoviocytes, and by infiltrating immune cells in response to the increased concentration of inflammatory mediators, like growth factors and cytokines. MMPs are zinc and calcium-dependent proteinases and play an important role in physiological and pathological extracellular matrix (ECM) turn over. Their substrate specificity gives them the ability to degrade all major ECM components, like aggrecan, elastin, gelatin, fibronectin and all types of collagen even the triple helix of collagen monomers. The ECM consists of two large three-dimensional cross-linked macromolecule classes: one are fibrous proteins, like collagen and elastin fibers that are responsible for ECM's structure, tensile strength, resiliency, reversible extensibility, and deformability and the second class is comprised of proteoglycans composed of glycosaminoglycan (GAG) chains covalently attached to protein cores that are multifunctionally involved in signaling pathways and cell interactions. ECM is present within all tissues and organs and changes in ECM structure contribute to pathogenesis, e.g. wounded and fibrotic tissue, COPD or tumours. This thesis primarily focuses on the development of a diagnostic peptide system, that enables to gain information on MMP activity from ECM by deploying the isobaric mass encoding strategy. The core element of the developed system is an isotopically labelled peptide sequence (mass tag), that is released in response to elevated levels of MMPs and allows multiplexed detection in tandem mass spectrometry (LC-MS/MS). The mass reporters possess a modular structure with different functionalities. C-terminal either a transglutaminase (TG) recognition sequence or a high molecular weight polyethylene glycol (PEG) moiety was attached to immobilize the mass reporters covalently or physically at the injection site. The following matrix metalloproteinase substrate sequence (MSS) is incorporated in two different versions with different sensitivity to MMPs. The MSS were applied in pairs for relative quantification consisting of the cleavable version synthesized with natural L-amino acids and the non-cleavable D-amino acid variant. The mass tag was synthesized with isotopically labelled amino acids and is separated from the MSS by a UV light-sensitive molecule. N-terminal the mass tag is followed by a tobacco etch virus protease (TEV) sensitive sequence, that is responsible to separate the mass tag from the affinity tag, which was either the Strep-tag II sequence or biotin and were added for purification purposes. Chapter 1 presents a step-by-step protocol on how to design a mass tag family allowing for multiplexed analysis by LC-MS/MS. The multiplexing is achieved by developing an isobar mass tag family with four family members, which are chromatographically indistinguishable, but due to the mass encoding principles they fragment in distinct y-type ions with a mass difference of 1 or 2 Da each in MS2. Furthermore, it is explained how to covalently attach the mass reporter peptides onto ECM by the activated calcium-catalyzed blood coagulation transglutaminase factor XIII (FXIIIa). The lysine of mass reporter's TG sequence (D-domain of insulin-like growth factor-I (IGF-I)) and a glutamine in fibronectin are covalently crosslinked by FXIIIa and build an isopeptide bond. Elevated levels of MMP release the mass reporters from ECM by recognizing the inter-positioned MSS. The designed mass reporters were able to monitor enzyme activity in an in vitro setting with cell-derived ECM, which was shown in Chapter 2. The modular structured mass reporters were investigated in a proof of concept study. First, the different modules were characterized in terms of their MMP responsiveness and their sensitivity to TEV protease and UV light. Then the FXIIIa-mediated coupling reaction was detailed and the successful coupling on ECM was visualized by an immunosorbent assay or confocal laser scanning microscopy. Finally, the immobilized mass reporters on ECM were incubated with MMP-9 to investigate their multiplexing ability of MMP activity. The cleaved mass reporter fragments were purified in three steps and mass tags were analyzed as mix of all four in LC-MS/MS. Chapter 3 describes the change from an immobilizing system as seen in chapter 1 and 2 to a soluble enzyme activity monitoring system that was applied in an osteoarthritic mouse model. Instead of the immobilizing TG sequence the C-terminal MMS was extended with two amino acids where one holds an azide moiety to perform a strain-promoted azide-alkyne cycloaddition to a high molecular weight dibenzocyclooctyne-polyethylene glycol (DBCO-PEG), which was chosen to retain the mass reporters at the injection site. Furthermore, the N-terminal affinity tag was extended with a 2.5 kDa PEG chain to increase the half-life of the mass reporter peptides after MMP release. The systems biocompatibility was proved but its enzyme monitoring ability in an in vivo setting could not be analyzed as samples degraded during shipping resulting from the Chinese customs blocking transport to Germany. In summary the diagnostic peptide system was developed in two variants. The immobilized version one from chapter 1 and 2 was designed to be covalently attached to ECM by the transglutaminase-mediated cross-linking reaction. In an in vitro setting the functionality of the mass reporter system for the detection of MMP activity was successfully verified. The second variant comprises of a soluble mass reporter system that was tested in an OA mouse model and showed biocompatibility. With these two designed systems this thesis provides a flexible platform based on multiplexed analysis with mass-encoded peptides to characterize cell culture models regarding their MMP activity, to deploy cell-derived ECM as endogenous depot scaffold and to develop a mass tag family that enables simultaneous detection of at least four mass tags.}, subject = {Extrazellul{\"a}re Matrix}, language = {en} } @phdthesis{Frischholz2021, author = {Frischholz, Sebastian}, title = {Resveratrol Counteracts IL-1β-mediated Impairment of Extracellular Matrix Deposition in 3D Articular Chondrocyte Constructs}, doi = {10.25972/OPUS-23745}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237453}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Articular cartilage is an exceptional connective tissue which by a network of fibrillar collagen and glycosaminoglycan (GAG) molecules allows both low- friction articulation and distribution of loads to the subchondral bone (Armiento et al., 2018, Ulrich-Vinther et al., 2003). Because of its very limited ability to self-repair, chondral defects following traumatic injury increase the risk for secondary osteoarthritis (OA) (Muthuri et al., 2011). Still, current OA treatments such as common nonsteroidal anti-inflammatory drugs (NSAIDs) and joint replacement primarily address end-stage symptoms (Tonge et al., 2014). As low-grade inflammation plays a pivotal role in the pathogenesis of OA (Robinson et al., 2016), there is a strong demand for novel therapeutic concepts, such as integrating application of anti-inflammatory agents into cartilage cell- based therapies in order to effectively treat OA affected joints in early disease stages. The polyphenolic phytoalexin resveratrol (RSV), found in the skin of red grapes, berries, and peanuts, has been shown to have effective anti-inflammatory properties (Shen et al., 2012). However, its long-term effects on 3D chondrocyte constructs cultured in an inflammatory environment with regard to tissue quality have remained unexplored so far. Therefore, in this study, pellets made from expanded porcine articular chondrocytes were cultured for 14 days with either the pro-inflammatory cytokine interleukin-1β (IL-1β) (1 - 10 ng/ml) or RSV (50 μM) alone, or a co-treatment with both agents. Constructs treated with chondrocyte medium only served as control. Treatment with IL-1β at 10 ng/ml resulted in a significantly smaller pellet size and reduced DNA content. However, RSV counteracted the IL-1β-induced decrease and significantly enhanced diameter and DNA content. Also, in terms of GAG deposition, treatment with IL-1β at 10 ng/ml resulted in a tremendous depletion of absolute GAG content and GAG/DNA. Again, RSV co-treatment counteracted the inflammatory stimulus and led to a partial recovery of GAG content. Histological analysis utilizing safranin-O staining confirmed these findings. Marked expression of the cartilage-degrading enzyme matrix metalloproteinase 13 (MMP13) was detected in IL-1β-treated pellets, but none upon RSV co- treatment. Moreover, co-treatment of IL-1β-challenged constructs with RSV significantly increased absolute collagen content. However, under non- inflammatory conditions, RSV induced gene expression and protein accumulation of collagen type X, a marker for undesirable hypertrophy. Taken together, in the present thesis, RSV was demonstrated to elicit marked beneficial effects on the extracellular matrix composition of 3D cartilaginous constructs in long-term inflammatory culture in vitro, but also induced hypertrophy under non-inflammatory conditions. Based on these findings, further experiments examining multiple concentrations of RSV under various inflammatory conditions appear desirable concerning potential therapeutic applicability in OA.}, subject = {Resveratrol}, language = {en} } @phdthesis{Semeniak2018, author = {Semeniak, Daniela}, title = {Role of bone marrow extracellular matrix proteins on platelet biogenesis and function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155857}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Platelets, small anucleated blood cells responsible for hemostasis, interact at sights of injury with several exposed extracellular matrix (ECM) proteins through specific receptors. Ligand binding leads to activation, adhesion and aggregation of platelets. Already megakaryocytes (MKs), the immediate precursor cells in bone marrow (BM), are in constant contact to these ECM proteins (ECMP). The interaction of ECMP with MKs is, in contrast to platelets, less well understood. It is therefore important to study how MKs interact with sinusoids via the underlying ECMP. This thesis addresses three major topics to elucidate these interactions and their role in platelet biogenesis. First, we studied the topology of ECMP within BM and their impact on proplatelet formation (PPF) in vitro. By establishing a four-color immunofluorescence microscopy we localized collagens and other ECMP and determined their degree of contact towards vessels and megakaryocytes (MKs). In in vitro assays we could demonstrate that Col I mediates increased MK adhesion, but inhibits PPF by collagen receptor GPVI. By immunoblot analyses we identified that the signaling events underyling this inhibition are different from those in platelet activation at the Src family kinase level. Second, we determined the degree of MK-ECM interaction in situ using confocal laser scanning microscopy of four-color IF-stained femora and spleen sections. In transgenic mouse models lacking either of the two major collagen receptors we could show that these mice have an impaired association of MKs to collagens in the BM, while the MK count in spleen increased threefold. This might contribute to the overall unaltered platelet counts in collagen receptor-deficient mice. In a third approach, we studied how the equilibrium of ECMP within BM is altered after irradiation. Collagen type IV and laminin-α5 subunits were selectively degraded at the sinusoids, while the matrix degrading protease MMP9 was upregulated in MKs. Platelet numbers decreased and platelets became hyporesponsive towards agonists, especially those for GPVI activation. Taken together, the results indicate that MK-ECM interaction differs substantially from the well-known platelet-ECM signaling. Future work should further elucidate how ECMP can be targeted to ameliorate the platelet production and function defects, especially in patients after BM irradiation.}, subject = {Knochenmark}, language = {en} } @phdthesis{Gutmann2019, author = {Gutmann, Marcus}, title = {Functionalization of cells, extracellular matrix components and proteins for therapeutic application}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170602}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Glycosylation is a biochemical process leading to the formation of glycoconjugates by linking glycans (carbohydrates) to proteins, lipids and various small molecules. The glycans are formed by one or more monosaccharides that are covalently attached, thus offering a broad variety depending on their composition, site of glycan linkage, length and ramification. This special nature provides an exceptional and fine tunable possibility in fields of information transfer, recognition, stability and pharmacokinetic. Due to their intra- and extracellular omnipresence, glycans fulfill an essential role in the regulation of different endogenous processes (e.g. hormone action, immune surveillance, inflammatory response) and act as a key element for maintenance of homeostasis. The strategy of metabolic glycoengineering enables the integration of structural similar but chemically modified monosaccharide building blocks into the natural given glycosylation pathways, thereby anchoring them in the carbohydrate architecture of de novo synthesized glycoconjugates. The available unnatural sugar molecules which are similar to endogenous sugar molecules show minimal perturbation in cell function and - based on their multitude functional groups - offer the potential of side directed coupling with a target substance/structure as well as the development of new biological properties. The chemical-enzymatic strategy of glycoengineering provides a valuable complement to genetic approaches. This thesis primarily focuses on potential fields of application for glycoengineering and its further use in clinic and research. The last section of this work outlines a genetic approach, using special Escherichia coli systems, to integrate chemically tunable amino acids into the biosynthetic pathway of proteins, enabling specific and site-directed coupling with target substances. With the genetic information of the methanogen archaea, Methanosarcina barkeri, the E. coli. system is able to insert a further amino acid, the pyrrolysine, at the ribosomal site during translation of the protein. The natural stop-codon UAG (amber codon) is used for this newly obtained proteinogenic amino acid. Chapter I describes two systems for the integration of chemically tunable monosaccharides and presents methods for characterizing these systems. Moreover, it gives a general overview of the structure as well as intended use of glycans and illustrates different glycosylation pathways. Furthermore, the strategy of metabolic glycoengineering is demonstrated. In this context, the structure of basic building blocks and the epimerization of monosaccharides during their metabolic fate are discussed. Chapter II translates the concept of metabolic glycoengineering to the extracellular network produced by fibroblasts. The incorporation of chemically modified sugar components in the matrix provides an innovative, elegant and biocompatible method for site-directed coupling of target substances. Resident cells, which are involved in the de novo synthesis of matrices, as well as isolated matrices were characterized and compared to unmodified resident cells and matrices. The natural capacity of the matrix can be extended by metabolic glycoengineering and enables the selective immobilization of a variety of therapeutic substances by combining enzymatic and bioorthogonal reaction strategies. This approach expands the natural ability of extracellular matrix (ECM), like the storage of specific growth factors and the recruitment of surface receptors along with synergistic effects of bound substances. By the selection of the cell type, the production of a wide range of different matrices is possible. Chapter III focuses on the target-oriented modification of cell surface membranes of living fibroblast and human embryonic kidney cells. Chemically modified monosaccharides are inserted by means of metabolic glycoengineering and are then presented on the cell surface. These monosaccharides can later be covalently coupled, by "strain promoted azide-alkyne cycloaddition" (SPAAC) and/or "copper(I)-catalyzed azide-alkyne cycloaddition" (CuAAC), to the target substance. Due to the toxicity of the copper catalysator in the CuAAC, cytotoxicity analyses were conducted to determine the in vivo tolerable range for the use of CuAAC on living cell systems. Finally, the efficacy of both bioorthogonal reactions was compared. Chapter IV outlines two versatile carrier - spacer - payload delivery systems based on an enzymatic cleavable linker, triggered by disease associated protease. In the selection of carrier systems (i) polyethylene glycol (PEG), a well-studied, Food and Drug Administration approved substance and very common tool to increase the pharmacokinetic properties of therapeutic agents, was chosen as a carrier for non-targeting systems and (ii) Revacept, a human glycoprotein VI antibody, was chosen as a carrier for targeting systems. The protease sensitive cleavable linker was genetically inserted into the N-terminal region of fibroblast growth factor 2 (FGF-2) without jeopardizing protein activity. By exchanging the protease sensitive sequence or the therapeutic payload, both systems represent a promising and adaptable approach for establishing therapeutic systems with bioresponsive release, tailored to pre-existing conditions. In summary, by site-specific functionalization of various delivery platforms, this thesis establishes an essential cornerstone for promising strategies advancing clinical application. The outlined platforms ensure high flexibility due to exchanging single or multiple elements of the system, individually tailoring them to the respective disease or target site.}, subject = {Glykosylierung}, language = {en} } @phdthesis{Jones2018, author = {Jones, Gabriel}, title = {Bioinspired FGF-2 delivery for pharmaceutical application}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153179}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In resent years the rate of biologics (proteins, cytokines and growth-factors) as newly registered drugs has steadily risen. The greatest challenge for pharmaceutical biologics poses its arrival at the desired target location due to e.g. proteolytic and pH dependent degradation, plasma protein binding, insolubility etc. Therefore, advanced drug delivery systems, where biologics are site directed immobilized to carriers mimicking endogenous storage sites such as the extra cellular matrix can enormously assist the application and consequently the release of exogenous administered pharmaceutical biologics. We have resorted to the fibroblast growth factor 2/ heparansulfate/ fibroblast growth factor bindingprotein 1 system as a model. Phase I deals with the selection and subcloning of a wild type murine FGF-2 construct into the bacterial pHis-Trx vector system for high yields of expression and fast, feasible purification measurements. This first step enables the provision of mFGF-2, which plays a pivotal part as a growth factor in the wound healing process as well as the vascularization of tumors, for future investigations. Therefore, the correct expression of mFGF-2 was monitored via MALDI-MS and SDS-PAGE, whereas the proper folding of the tertiary beta-trefoil structure was assessed by fluorescence spectroscopy. The MTT assay allowed us to ensure that the bioactivity was comparable to sourced FGF-2. In the last step, the purity; a requirement for future binding- and protein-protein interaction assays was monitored chromatographically (RP-HPLC). In addition, a formulation for freeze-drying was developed to ensure protein stability and integrity over a period of 60 days. Altogether, the bacterial expression and purification proved to be suitable, leading to bioactive and stable production of mFGF-2. In Phase II the expression, purification and characterization of FGFBP1, as the other key partner in the FGF-2/ HS/ FGFBP1 system is detailed. As FGFBP1 exhibits a complex tertiary structure, comprised of five highly conserved disulfide bonds and presumably multiple glycosylation sites, a eukaryotic expression was used. Human embryonic kidney cells (HEK 293F) as suspension cells were transiently transfected with DNA-PEI complexes, leading to expression of Fc-tagged murine FGFBP1. Different PEI to DNA ratios and expression durations were investigated for optimal expression yields, which were confirmed by western blot analysis and SDS-PAGE. LC-MS/MS analysis of trypsin and elastase digested FGFBP1 gave first insights of the three O-glycosylation sites. Furthermore, the binding protein was modified by inserting a His6-tag between the Fc-tag (for purification) and the binding protein itself to enable later complexation with radioactive 99mTc as radio ligand to track bio distribution of administered FGFBP1 in mice. Overall, expression, purification and characterization of mFGFBP1 variants were successful with a minor draw back of instability of the tag free binding protein. Combining the insights and results of expressed FGF-2 as well as FGFBP1 directed us to the investigation of the interaction of each partner in the FGF-2/ HS/ FGFBP1 system as Phase III. Thermodynamic behavior of FGF-2 and low molecular weight heparin (enoxaparin), as a surrogate for HS, under physiological conditions (pH 7.4) and pathophysiological conditions, similar to hypoxic, tumorous conditions (acidic pH) were monitored by means of isothermal titration calorimetry. Buffer types, as well as the pH influences binding parameters such as stoichiometry (n), enthalpy (ΔH) and to some extent the dissociation constant (KD). These findings paved the way for kinetic binding investigations, which were performed by surface plasmon resonance assays. For the first time the KD of full length FGFBP1 and FGF-2 was measured. Furthermore the binding behavior of FGF-2 to FGFBP1 in the presence of various heparin concentrations suggest a kinetic driven release of bound FGF-2 by its chaperone FGFBP1. Having gathered multiple data on the FGF-2 /HS /FGFBP1 system mainly in solution, our next step in Phase IV was the development of a test system for immobilized proteins. With the necessity to better understand and monitor the cellular effects of immobilized growth factors, we decorated glass slides in a site-specific manner with an RGD-peptide for adhesion of cells and via the copper(I)-catalyzed-azide-alkyne cycloaddition (CuAAC) a fluorescent dye (a precursor for modified proteins for click chemistry). Human osteosarcoma cells were able to grow an the slides and the fluorescence dye was immobilized in a biocompatible way allowing future thorough bioactivity assay such as MTT-assays and phospho-ERK-assays of immobilized growth factors.}, subject = {Fibroblastenwachstumsfaktor}, language = {en} } @phdthesis{Werner2014, author = {Werner, Katharina Julia}, title = {Adipose Tissue Engineering - In vitro Development of a subcutaneous fat layer and a vascularized adipose tissue construct utilizing extracellular matrix structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104676}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Each year millions of plastic and reconstructive procedures are performed to regenerate soft tissue defects after, for example, traumata, deep burns or tumor resections. Tissue engineered adipose tissue grafts are a promising alternative to autologous fat transfer or synthetic implants to meet this demand for adipose tissue. Strategies of tissue engineering, especially the use of cell carriers, provide an environment for better cell survival, an easier positioning and supplemented with the appropriate conditions a faster vascularization in vivo. To successfully engineer an adipose tissue substitute for clinical use, it is crucial to know the actual intended application. In some areas, like the upper and lower extremities, only a thin subcutaneous fat layer is needed and in others, large volumes of vascularized fat grafts are more desirable. The use and interplay of stem cells and selected scaffolds were investigated and provide now a basis for the generation of fitted and suitable substitutes in two different application areas. Complex injuries of the upper and lower extremities, in many cases, lead to excessive scarring. Due to severe damage to the subcutaneous fat layer, a common sequela is adhesion formation to mobile structures like tendons, nerves, and blood vessels resulting in restricted motion and disabling pain [Moor 1996, McHugh 1997]. In order to generate a subcutaneous fat layer to cushion scarred tissue after substantial burns or injuries, different collagen matrices were tested for clinical handling and the ability to support adipogenesis. When testing five different collagen matrices, PermacolTM and StratticeTM showed promising characteristics; additionally both possess the clinical approval. Under culture conditions, only PermacolTM, a cross-linked collagen matrix, exhibited an excellent long-term stability. Ranking nearly on the same level was StratticeTM, a non-cross-linked dermal scaffold; it only exhibited a slight shrinkage. All other scaffolds tested were severely compromised in stability under culture conditions. Engineering a subcutaneous fat layer, a construct would be desirable with a thin layer of emerging fat for cushioning on one side, and a non-seeded other side for cell migration and host integration. With PermacolTM and StratticeTM, it was possible to produce constructs with ASC (adipose derived stem cells) seeded on one side, which could be adipogenically differentiated. Additionally, the thickness of the cell layer could be varied. Thereby, it becomes possible to adjust the thickness of the construct to the surrounding tissue. In order to reduce the pre-implantation time ex vivo and the costs, the culture time was varied by testing different induction protocols. An adipogenic induction period of only four days was demonstrated to be sufficient to obtain a substantial adipogenic differentiation of the applied ASC. Thus, seeded with ASC, PermacolTM and StratticeTM are suitable scaffolds to engineer subcutaneous fat layers for reconstruction of the upper and lower extremities, as they support adipogenesis and are appropriately thin, and therefore would not compromise the cosmesis. For the engineering of large-volume adipose tissue, adequate vascularization still represents a major challenge. With the objective to engineer vascularized fat pads, it is important to consider the slow kinetics of revascularization in vivo. Therefore, a decellularized porcine jejunum with pre-existing vascular structures and pedicles to connect to the host vasculature or the circulation of a bioreactor system was used. In a first step, the ability of a small decellularized jejunal section was tested for cell adhesion and for supporting adipogenic differentiation of hASC mono-cultures. Cell adhesion and adipogenic maturation of ASC seeded on the jejunal material was verified through histological and molecular analysis. After the successful mono-culture, the goal was to establish a MVEC (microvascular endothelial cells) and ASC co-culture; suitable culture conditions had to be found, which support the viability of both cell types and do not interfere with the adipogenic differentiation. After the elimination of EGF (epidermal growth factor) from the co-culture medium, substantial adipogenic maturation was observed. In the next step, a large jejunal segment (length 8 cm), with its pre-existing vascular structures and arterial/venous pedicles, was connected to the supply system of a custom-made bioreactor. After successful reseeding the vascular structure with endothelial cells, the lumen was seeded with ASC which were then adipogenically induced. Histological and molecular examinations confirmed adipogenic maturation and the existence of seeded vessels within the engineered construct. Noteworthily, a co-localization of adipogenically differentiating ASC and endothelial cells in vascular networks could be observed. So, for the first time a vascularized fat construct was developed in vitro, based on the use of a decellularized porcine jejunum. As this engineered construct can be connected to a supply system or even to a patient vasculature, it is versatile in use, for example, as transplant in plastic and reconstruction surgery, as model in basic research or as an in vitro drug testing system. To summarize, in this work a promising substitute for subcutaneous fat layer reconstruction, in the upper and lower extremities, was developed, and the first, as far as reported, in vitro generated adipose tissue construct with integrated vascular networks was successfully engineered.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Heffels2012, author = {Heffels, Karl-Heinz}, title = {Functional nanofibres for regenerative medicine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75684}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {This thesis concerned the design and examination of a scaffold for tissue engineering applications. The template for the presented scaffold came from nature itself: the intercellular space in tissues that provides structure and support to the cells of the respective tissue, known as extracellular matrix (ECM). Fibres are a predominant characteristic feature of ECM, providing adhesion sites for cell-matrix interactions. In this dissertation a fibrous mesh was generated using the electrospinning technique to mimic the fibrous structure of the ECM. Two base polymers were explored: a biodegradable polyester, poly(D,L-lactide-co-glycolide); and a functional PEG-based star polymer, NCO-sP(EO-stat-PO). This topic was described in three major parts: the first part was materials based, concerning the chemical design and characterisation of the polymer scaffolds; the focus was then shifted to the cellular response to this fibrous scaffold; and finally the in vivo performance of the material was preliminarily assessed. The first steps towards an electrospun mesh started with adjusting the spinning parameters for the generation of homogeneous fibres. As reported in Chapter 3 a suitable setup configuration was on the one hand comprised of a spinning solution that consisted of 28.5 w/v\% PLGA RG 504 and 6 w/v\% NCO-sP(EO-stat-PO) in 450 µL acetone, 50 µL DMSO and 10 µL of an aqueous trifluoroacetic acid solution. On the other hand an ideal spinning behaviour was achieved at process parameters such as a flow rate of 0.5 mL/h, spinneret to collector distance of 12-16 cm and a voltage of 13 kV. The NCO-sP(EO-stat-PO) containing fibres proved to be highly hydrophilic as the functional additive was present on the fibre surface. Furthermore, the fibres featured a bulk degradation pattern as a consequence of the proportion of PLGA. Besides the morphologic similarity to ECM fibres, the functionality of the electrospun fibres is also decisive for a successful ECM mimicry. In Chapter 4, the passive as well as active functionality of the fibres was investigated. The fibres were required to be protein repellent to prevent an unspecific cell adhesion. This was proven as even 6.5 \% sP(EO-stat-PO) in the PLGA fibres reduced any unspecific protein adsorption of bovine serum albumin and foetal calf serum to less than 1 \%. However, avidin based proteins attached to the fibres. This adhesion process was avoided by an additional fibre surface treatment with glycidol. The active functionalisation of NCO-sP(EO-stat-PO)/PLGA fibres was investigated with two fluorescent dyes and biocytin. A threefold, chemically orthogonal, fibre modification was achieved with these dyes. The chapters about the chemical and mechanical properties laid the basis for the in vitro chapters where a specific fibre functionalisation with peptides was conducted to analyse the cell adhesion and biochemical expressions. Beginning with fibroblasts in Chapter 5 the focus was on the specific cell adhesion on the electrospun fibres. While NCO-sP(EO-stat-PO)/PLGA fibres without peptides did not allow any adhesion of fibroblasts, a fibre modification with GRGDS (an adhesion mediating peptide sequence) induced the adhesion and spreading of human dermal fibroblasts on the fibrous scaffolds. The control sequence GRGES that has no adhesion mediating qualities did not lead to any cell adhesion as observed on fibres without modifications. While the experiments of Chapter 5 were a proof-of-concept, in Chapter 6 a possible application in cartilage tissue engineering was examined. Therefore, primary human chondrocytes were seeded on fibrous scaffolds with various peptide sequences. Though the chondrocytes exhibited high viability on all scaffolds, an active interaction of cells and fibres was only found for the decorin derived sequence CGKLER. Live-cell-imaging revealed both cell attachment and migration within CGKLER-modified meshes. As chondrocytes undergo a de-differentiation towards a fibroblast-like phenotype, the chondrogenic re-differentiation on these scaffolds was investigated in a long term cell culture experiment of 28 days. Therefore, the glycosaminoglycan production was analysed as well as the mRNA expression of genes coding for collagen I and II, aggrecan and proteoglycan 4. In general only low amounts of the chondrogenic markers were measured, suggesting no chondrogenic differentiation. For conclusive evidence follow-up experiments are required that support or reject the findings. The success of an implant for tissue engineering relies not only on the response of the targeted cell type but also on the immune reaction caused by leukocytes. Hence, Chapter 7 dealt with primary human macrophages and their behaviour and phenotype on two-dimensional (2D) surfaces compared to three-dimensional (3D) fibrous substrates. It was found that the general non-adhesiveness of NCO-sP(EO-stat-PO) surfaces and fibres does not apply to macrophages. The cells aligned along the fibres on surfaces or resided in the pores of the meshes. On flat surfaces without 3D structure the macrophages showed a retarded adhesion kinetic accompanied with a high migratory activity indicating their search for a topographical feature to adhere to. Moreover, a detailed investigation of cell surface markers and chemokine signalling revealed that macrophages on 2D surfaces exhibited surface markers indicating a healing phenotype while the chemokine release suggested a pro-inflammatory phenotype. Interestingly, the opposite situation was found on 3D fibrous substrates with pro-inflammatory surface markers and pro-angiogenic cytokine release. As the immune response largely depends on cellular communication, it was concluded that the NCO-sP(EO-stat-PO)/PLGA fibres induce an adequate immune response with promising prospects to be used in a scaffold for tissue engineering. The final chapter of this thesis reports on a first in vivo study conducted with the presented electrospun fibres. Here, the fibres were combined with a polypropylene mesh for the treatment of diaphragmatic hernias in a rabbit model. Two scaffold series were described that differed in the overall surface morphology: while the fibres of Series A were incorporated into a thick gel of NCO-sP(EO-stat-PO), the scaffolds of Series B featured only a thin hydrogel layer so that the overall fibrous structure could be retained. After four months in vivo the treated defects of the diaphragm were significantly smaller and filled mainly with scar tissue. Thick granulomas occurred on scaffolds of Series A while the implants of Series B did not induce any granuloma formation. As a consequence of the generally positive outcome of this study, the constructs were enhanced with a drug release system in a follow-up project. The incorporated drug was the MMP-inhibitor Ilomastat which is intended to reduce the formation of scar tissue. In conclusion, the simple and straight forward fabrication, the threefold functionalisation possibility and general versatile applicability makes the meshes of NCO-sP(EO-stat-PO)/PLGA fibres a promising candidate to be applied in tissue engineering scaffolds in the future.}, subject = {Nanofaser}, language = {en} } @phdthesis{Schlegelmilch2012, author = {Schlegelmilch, Katrin}, title = {Molecular function of WISP1/CCN4 in the musculoskeletal system with special reference to apoptosis and cell survival}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73430}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Human adult cartilage is an aneural and avascular type of connective tissue, which consequently reflects reduced growth and repair rates. The main cell type of cartilage are chondrocytes, previously derived from human mesenchymal stem cells (hMSCs). They are responsible for the production and maintainance of the cartilaginous extracellular matrix (ECM), which consists mainly of collagen and proteoglycans. Signal transmission to or from chondrocytes, generally occurs via interaction with signalling factors connected to the cartilaginous ECM. In this context, proteins of the CCN family were identified as important matricellular and multifunctional regulators with high significance during skeletal development and fracture repair. In this thesis, main focus lies on WISP1/CCN4, which is known as a general survival factor in a variety of cell types and seems to be crucial during lineage progression of hMSCs into chondrocytes. We intend to counter the lack of knowledge about the general importance of WISP1-signalling within the musculoskeletal system and especially regarding cell death and survival by a variety of molecular and cell biology methods. First, we established a successful down-regulation of endogenous WISP1 transcripts within different cell types of the human musculoskeletal system through gene-silencing. Interestingly, WISP1 seems to be crucial to the survival of all examined cell lines and primary hMSCs, since a loss of WISP1 resulted in cell death. Bioinformatical analyses of subsequent performed microarrays (WISP1 down-regulated vs. control samples) confirmed this observation in primary hMSCs and the chondrocyte cell line Tc28a2. Distinct clusters of regulated genes, closely related to apoptosis induction, could be identified. In this context, TRAIL induced apoptosis as well as p53 mediated cell death seem to play a crucial role during the absence of WISP1 in hMSCs. By contrast, microarray analysis of WISP1 down-regulated chondrocytes indicated rather apoptosis induction via MAPK-signalling. Despite apoptosis relevant gene regulations, microarray analyses also identified clusters of differentially expressed genes of other important cellular activities, e.g. a huge cluster of interferon-inducible genes in hMSCs or gene regulations affecting cartilage homeostasis in chondrocytes. Results of this thesis emphasize the importance of regulatory mechanisms that influence cell survival of primary hMSCs and chondrocytes in the enforced absence of WISP1. Moreover, findings intensified the assumed importance for WISP1-signalling in cartilage homeostasis. Thus, this thesis generated an essential fundament for further examinations to investigate the role of WISP1-signalling in cartilage homeostasis and cell death.}, subject = {Knorpelzelle}, language = {en} }