@article{DennerLangPellenetal.2017, author = {Denner, Ansgar and Lang, Jean-Nicolas and Pellen, Mathieu and Uccirati, Sandro}, title = {Higgs production in association with off-shell top-antitop pairs at NLO EW and QCD at the LHC}, series = {Journal of High Energy Physics}, journal = {Journal of High Energy Physics}, number = {2}, doi = {10.1007/JHEP02(2017)053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171871}, year = {2017}, abstract = {We present NLO electroweak corrections to Higgs production in association with off-shell top-antitop quark pairs. The full process pp → e +νeµ -ν¯µbb¯H is considered, and hence all interference, off-shell, and non-resonant contributions are taken into account. The electroweak corrections turn out to be below one per cent for the integrated cross section but can exceed 10\% in certain phase-space regions. In addition to its phenomenological relevance, the computation constitutes a major technical achievement as the full NLO virtual corrections involving up to 9-point functions have been computed exactly. The results of the full computation are supported by two calculations in the double-pole approximation. These also allow to infer the effect of off-shell contributions and emphasise their importance especially for the run II of the LHC. Finally, we present combined predictions featuring both NLO electroweak and QCD corrections in a common set-up that will help the experimental collaborations in their quest of precisely measuring the aforementioned process.}, language = {en} } @article{DennerLangUccirati2017, author = {Denner, Ansgar and Lang, Jean-Nicolas and Uccirati, Sandro}, title = {NLO electroweak corrections in extended Higgs sectors with RECOLA2}, series = {Journal of High Energy Physics}, volume = {7}, journal = {Journal of High Energy Physics}, number = {87}, doi = {10.1007/JHEP07(2017)087}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170673}, year = {2017}, abstract = {We present the computer code RECOLA2 along with the first NLO electroweak corrections to Higgs production in vector-boson fusion and updated results for Higgs strahlung in the Two-Higgs-Doublet Model and Higgs-Singlet extension of the Standard Model. A fully automated procedure for the generation of tree-level and one-loop matrix elements in general models, including renormalization, is presented. We discuss the application of the Background-Field Method to the extended models. Numerical results for NLO electroweak cross sections are presented for different renormalization schemes in the Two-Higgs-Doublet Model and the Higgs-Singlet extension of the Standard Model. Finally, we present distributions for the production of a heavy Higgs boson.}, language = {en} }