@article{LueningschroerBinottiDombertetal.2017, author = {L{\"u}ningschr{\"o}r, Patrick and Binotti, Beyenech and Dombert, Benjamin and Heimann, Peter and Perez-Lara, Angel and Slotta, Carsten and Thau-Habermann, Nadine and von Collenberg, Cora R. and Karl, Franziska and Damme, Markus and Horowitz, Arie and Maystadt, Isabelle and F{\"u}chtbauer, Annette and F{\"u}chtbauer, Ernst-Martin and Jablonka, Sibylle and Blum, Robert and {\"U}{\c{c}}eyler, Nurcan and Petri, Susanne and Kaltschmidt, Barbara and Jahn, Reinhard and Kaltschmidt, Christian and Sendtner, Michael}, title = {Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {678}, doi = {10.1038/s41467-017-00689-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170048}, year = {2017}, abstract = {Autophagy-mediated degradation of synaptic components maintains synaptic homeostasis but also constitutes a mechanism of neurodegeneration. It is unclear how autophagy of synaptic vesicles and components of presynaptic active zones is regulated. Here, we show that Pleckstrin homology containing family member 5 (Plekhg5) modulates autophagy of synaptic vesicles in axon terminals of motoneurons via its function as a guanine exchange factor for Rab26, a small GTPase that specifically directs synaptic vesicles to preautophagosomal structures. Plekhg5 gene inactivation in mice results in a late-onset motoneuron disease, characterized by degeneration of axon terminals. Plekhg5-depleted cultured motoneurons show defective axon growth and impaired autophagy of synaptic vesicles, which can be rescued by constitutively active Rab26. These findings define a mechanism for regulating autophagy in neurons that specifically targets synaptic vesicles. Disruption of this mechanism may contribute to the pathophysiology of several forms of motoneuron disease.}, language = {en} } @article{KarlGriesshammerUeceyleretal.2017, author = {Karl, Franziska and Grießhammer, Anne and {\"U}{\c{c}}eyler, Nurcan and Sommer, Claudia}, title = {Differential Impact of miR-21 on Pain and Associated Affective and Cognitive Behavior after Spared Nerve Injury in B7-H1 ko Mouse}, series = {Frontiers in Molecular Neuroscience}, volume = {10}, journal = {Frontiers in Molecular Neuroscience}, number = {219}, doi = {10.3389/fnmol.2017.00219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170722}, year = {2017}, abstract = {MicroRNAs (miRNAs) are increasingly recognized as regulators of immune and neuronal gene expression and are potential master switches in neuropathic pain pathophysiology. miR-21 is a promising candidate that may link the immune and the pain system. To investigate the pathophysiological role of miR-21 in neuropathic pain, we assessed mice deficient of B7 homolog 1 (B7-H1), a major inhibitor of inflammatory responses. In previous studies, an upregulation of miR-21 had been shown in mouse lymphocytes. Young (8 weeks), middle-aged (6 months), and old (12 months) B7-H1 ko mice and wildtype littermates (WT) received a spared nerve injury (SNI). We assessed thermal withdrawal latencies and mechanical withdrawal thresholds. Further, we performed tests for anxiety-like and cognitive behavior. Quantitative real time PCR was used to determine miR-21 relative expression in peripheral nerves, and dorsal root ganglia (DRG) at distinct time points after SNI. We found mechanical hyposensitivity with increasing age of na{\"i}ve B7-H1 ko mice. Young and middle-aged B7-H1 ko mice were more sensitive to mechanical stimuli compared to WT mice (young: p < 0.01, middle-aged: p < 0.05). Both genotypes developed mechanical and heat hypersensitivity (p < 0.05) after SNI, without intergroup differences. No relevant differences were found after SNI in three tests for anxiety like behavior in B7-H1 ko and WT mice. Also, SNI had no effect on cognition. B7-H1 ko and WT mice showed a higher miR-21 expression (p < 0.05) and invasion of macrophages and T cells in the injured nerve 7 days after SNI without intergroup differences. Our study reveals that increased miR-21 expression in peripheral nerves after SNI is associated with reduced mechanical and heat withdrawal thresholds. These results point to a role of miR-21 in the pathophysiology of neuropathic pain, while affective behavior and cognition seem to be spared. Contrary to expectations, B7-H1 ko mice did not show higher miR-21 expression than WT mice, thus, a B7-H1 knockout may be of limited relevance for the study of miR-21 related pain.}, language = {en} } @article{HofmannKarlSommeretal.2017, author = {Hofmann, Lukas and Karl, Franziska and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Affective and cognitive behavior in the alpha-galactosidase A deficient mouse model of Fabry disease}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0180601}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170745}, pages = {e0180601}, year = {2017}, abstract = {Fabry disease is an X-linked inherited lysosomal storage disorder with intracellular accumulation of globotriaosylceramide (Gb3) due to α-galactosidase A (α-Gal A) deficiency. Fabry patients frequently report of anxiety, depression, and impaired cognitive function. We characterized affective and cognitive phenotype of male mice with α-Gal A deficiency (Fabry KO) and compared results with those of age-matched male wildtype (WT) littermates. Young (3 months) and old (≥ 18 months) mice were tested in the na{\"i}ve state and after i.pl. injection of complete Freund`s adjuvant (CFA) as an inflammatory pain model. We used the elevated plus maze (EPM), the light-dark box (LDB) and the open field test (OF) to investigate anxiety-like behavior. The forced swim test (FST) and Morris water maze (MWM) were applied to assess depressive-like and learning behavior. The EPM test revealed no intergroup difference for anxiety-like behavior in na{\"i}ve young and old Fabry KO mice compared to WT littermates, except for longer time spent in open arms of the EPM for young WT mice compared to young Fabry KO mice (p<0.05). After CFA injection, young Fabry KO mice showed increased anxiety-like behavior compared to young WT littermates (p<0.05) and na{\"i}ve young Fabry KO mice (p<0.05) in the EPM as reflected by shorter time spent in EPM open arms. There were no relevant differences in the LDB and the OF test, except for longer time spent in the center zone of the OF by young WT mice compared to young Fabry KO mice (p<0.05). Complementary to this, depression-like and learning behavior were not different between genotypes and age-groups, except for the expectedly lower memory performance in older age-groups compared to young mice. Our results indicate that genetic influences on affective and cognitive symptoms in FD may be of subordinate relevance, drawing attention to potential influences of environmental and epigenetic factors.}, language = {en} }