@phdthesis{Becker2018, author = {Becker, Martin}, title = {Understanding Human Navigation using Bayesian Hypothesis Comparison}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163522}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Understanding human navigation behavior has implications for a wide range of application scenarios. For example, insights into geo-spatial navigation in urban areas can impact city planning or public transport. Similarly, knowledge about navigation on the web can help to improve web site structures or service experience. In this work, we focus on a hypothesis-driven approach to address the task of understanding human navigation: We aim to formulate and compare ideas — for example stemming from existing theory, literature, intuition, or previous experiments — based on a given set of navigational observations. For example, we may compare whether tourists exploring a city walk "short distances" before taking their next photo vs. they tend to "travel long distances between points of interest", or whether users browsing Wikipedia "navigate semantically" vs. "click randomly". For this, the Bayesian method HypTrails has recently been proposed. However, while HypTrails is a straightforward and flexible approach, several major challenges remain: i) HypTrails does not account for heterogeneity (e.g., incorporating differently behaving user groups such as tourists and locals is not possible), ii) HypTrails does not support the user in conceiving novel hypotheses when confronted with a large set of possibly relevant background information or influence factors, e.g., points of interest, popularity of locations, time of the day, or user properties, and finally iii) formulating hypotheses can be technically challenging depending on the application scenario (e.g., due to continuous observations or temporal constraints). In this thesis, we address these limitations by introducing various novel methods and tools and explore a wide range of case studies. In particular, our main contributions are the methods MixedTrails and SubTrails which specifically address the first two limitations: MixedTrails is an approach for hypothesis comparison that extends the previously proposed HypTrails method to allow formulating and comparing heterogeneous hypotheses (e.g., incorporating differently behaving user groups). SubTrails is a method that supports hypothesis conception by automatically discovering interpretable subgroups with exceptional navigation behavior. In addition, our methodological contributions also include several tools consisting of a distributed implementation of HypTrails, a web application for visualizing geo-spatial human navigation in the context of background information, as well as a system for collecting, analyzing, and visualizing mobile participatory sensing data. Furthermore, we conduct case studies in many application domains, which encompass — among others — geo-spatial navigation based on photos from the photo-sharing platform Flickr, browsing behavior on the social tagging system BibSonomy, and task choosing behavior on a commercial crowdsourcing platform. In the process, we develop approaches to cope with application specific subtleties (like continuous observations and temporal constraints). The corresponding studies illustrate the variety of domains and facets in which navigation behavior can be studied and, thus, showcase the expressiveness, applicability, and flexibility of our methods. Using these methods, we present new aspects of navigational phenomena which ultimately help to better understand the multi-faceted characteristics of human navigation behavior.}, subject = {Bayes-Verfahren}, language = {en} } @article{SperlichBeckerHothoetal.2017, author = {Sperlich, Billy and Becker, Martin and Hotho, Andreas and Wallmann-Sperlich, Birgit and Sareban, Mahdi and Winkert, Kay and Steinacker, J{\"u}rgen M. and Treff, Gunnar}, title = {Sedentary behavior among national elite rowers during off-training — a pilot study}, series = {Frontiers in Physiology}, volume = {8}, journal = {Frontiers in Physiology}, number = {655}, doi = {10.3389/fphys.2017.00655}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158753}, year = {2017}, abstract = {The aim of this pilot study was to analyze the off-training physical activity (PA) profile in national elite German U23 rowers during 31 days of their preparation period. The hours spent in each PA category (i.e., sedentary: <1.5 metabolic equivalents (MET); light physical activity: 1.5-3 MET; moderate physical activity: 3-6 MET and vigorous intense physical activity: >6 MET) were calculated for every valid day (i.e., >480 min of wear time). The off-training PA during 21 weekdays and 10 weekend days of the final 11-week preparation period was assessed by the wrist-worn multisensory device Microsoft Band II (MSBII). A total of 11 rowers provided valid data (i.e., >480 min/day) for 11.6 week days and 4.8 weekend days during the 31 days observation period. The average sedentary time was 11.63 ± 1.25 h per day during the week and 12.49 ± 1.10 h per day on the weekend, with a tendency to be higher on the weekend compared to weekdays (p = 0.06; d = 0.73). The average time in light, moderate and vigorous PA during the weekdays was 1.27 ± 1.15, 0.76 ± 0.37, 0.51 ± 0.44 h per day, and 0.67 ± 0.43, 0.59 ± 0.37, 0.53 ± 0.32 h per weekend day. Light physical activity was higher during weekdays compared to the weekend (p = 0.04; d = 0.69). Based on our pilot study of 11 national elite rowers we conclude that rowers display a considerable sedentary off-training behavior of more than 11.5 h/day.}, language = {en} } @article{SirbuBeckerCaminitietal.2015, author = {S{\^i}rbu, Alina and Becker, Martin and Caminiti, Saverio and De Baets, Bernard and Elen, Bart and Francis, Louise and Gravino, Pietro and Hotho, Andreas and Ingarra, Stefano and Loreto, Vittorio and Molino, Andrea and Mueller, Juergen and Peters, Jan and Ricchiuti, Ferdinando and Saracino, Fabio and Servedio, Vito D.P. and Stumme, Gerd and Theunis, Jan and Tria, Francesca and Van den Bossche, Joris}, title = {Participatory Patterns in an International Air Quality Monitoring Initiative}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {8}, doi = {10.1371/journal. pone.0136763}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151379}, pages = {e0136763}, year = {2015}, abstract = {The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.}, language = {en} } @article{BeckerCaminitiFiorellaetal.2013, author = {Becker, Martin and Caminiti, Saverio and Fiorella, Donato and Francis, Louise and Gravino, Pietro and Haklay, Mordechai (Muki) and Hotho, Andreas and Loreto, Virrorio and Mueller, Juergen and Ricchiuti, Ferdinando and Servedio, Vito D. P. and Sirbu, Alina and Tria, Franesca}, title = {Awareness and Learning in Participatory Noise Sensing}, series = {PLOS ONE}, volume = {8}, journal = {PLOS ONE}, number = {12}, issn = {1932-6203}, doi = {10.1371/journal.pone.0081638}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127675}, pages = {e81638}, year = {2013}, abstract = {The development of ICT infrastructures has facilitated the emergence of new paradigms for looking at society and the environment over the last few years. Participatory environmental sensing, i.e. directly involving citizens in environmental monitoring, is one example, which is hoped to encourage learning and enhance awareness of environmental issues. In this paper, an analysis of the behaviour of individuals involved in noise sensing is presented. Citizens have been involved in noise measuring activities through the WideNoise smartphone application. This application has been designed to record both objective (noise samples) and subjective (opinions, feelings) data. The application has been open to be used freely by anyone and has been widely employed worldwide. In addition, several test cases have been organised in European countries. Based on the information submitted by users, an analysis of emerging awareness and learning is performed. The data show that changes in the way the environment is perceived after repeated usage of the application do appear. Specifically, users learn how to recognise different noise levels they are exposed to. Additionally, the subjective data collected indicate an increased user involvement in time and a categorisation effect between pleasant and less pleasant environments.}, language = {en} }