@article{DuekingHolmbergSperlich2018, author = {D{\"u}king, Peter and Holmberg, Hans-Christer and Sperlich, Billy}, title = {The potential usefulness of virtual reality systems for athletes: a short SWOT analysis}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, number = {128}, doi = {10.3389/fphys.2018.00128}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176178}, year = {2018}, abstract = {No abstract available.}, language = {en} } @article{DuekingFussHolmbergetal.2018, author = {D{\"u}king, Peter and Fuss, Franz Konstantin and Holmberg, Hans-Christer and Sperlich, Billy}, title = {Recommendations for assessment of the reliability, sensitivity, and validity of data provided by wearable sensors designed for monitoring physical activity}, series = {JMIR Mhealth and Uhealth}, volume = {6}, journal = {JMIR Mhealth and Uhealth}, number = {4}, doi = {10.2196/mhealth.9341}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176202}, pages = {e102}, year = {2018}, abstract = {Although it is becoming increasingly popular to monitor parameters related to training, recovery, and health with wearable sensor technology (wearables), scientific evaluation of the reliability, sensitivity, and validity of such data is limited and, where available, has involved a wide variety of approaches. To improve the trustworthiness of data collected by wearables and facilitate comparisons, we have outlined recommendations for standardized evaluation. We discuss the wearable devices themselves, as well as experimental and statistical considerations. Adherence to these recommendations should be beneficial not only for the individual, but also for regulatory organizations and insurance companies.}, language = {en} } @article{DuekingAchtzehnHolmbergetal.2018, author = {D{\"u}king, Peter and Achtzehn, Silvia and Holmberg, Hans-Christer and Sperlich, Billy}, title = {Integrated framework of load monitoring by a combination of smartphone applications, wearables and point-of-care testing provides feedback that allows individual responsive adjustments to activities of daily living}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {5}, doi = {10.3390/s18051632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176506}, pages = {1632}, year = {2018}, abstract = {Athletes schedule their training and recovery in periods, often utilizing a pre-defined strategy. To avoid underperformance and/or compromised health, the external load during training should take into account the individual's physiological and perceptual responses. No single variable provides an adequate basis for planning, but continuous monitoring of a combination of several indicators of internal and external load during training, recovery and off-training as well may allow individual responsive adjustments of a training program in an effective manner. From a practical perspective, including that of coaches, monitoring of potential changes in health and performance should ideally be valid, reliable and sensitive, as well as time-efficient, easily applicable, non-fatiguing and as non-invasive as possible. Accordingly, smartphone applications, wearable sensors and point-of-care testing appear to offer a suitable monitoring framework allowing responsive adjustments to exercise prescription. Here, we outline 24-h monitoring of selected parameters by these technologies that (i) allows responsive adjustments of exercise programs, (ii) enhances performance and/or (iii) reduces the risk for overuse, injury and/or illness.}, language = {en} } @article{FussDuekingWeizman2018, author = {Fuss, Franz Konstantin and D{\"u}king, Peter and Weizman, Yehuda}, title = {Discovery of a Sweet Spot on the Foot with a Smart Wearable Soccer Boot Sensor That Maximizes the Chances of Scoring a Curved Kick in Soccer}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00063}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189126}, pages = {63}, year = {2018}, abstract = {This paper provides the evidence of a sweet spot on the boot/foot as well as the method for detecting it with a wearable pressure sensitive device. This study confirmed the hypothesized existence of sweet and dead spots on a soccer boot or foot when kicking a ball. For a stationary curved kick, kicking the ball at the sweet spot maximized the probability of scoring a goal (58-86\%), whereas having the impact point at the dead zone minimized the probability (11-22\%). The sweet spot was found based on hypothesized favorable parameter ranges (center of pressure in x/y-directions and/or peak impact force) and the dead zone based on hypothesized unfavorable parameter ranges. The sweet spot was rather concentrated, independent of which parameter combination was used (two- or three-parameter combination), whereas the dead zone, located 21 mm from the sweet spot, was more widespread.}, language = {en} }