@article{JessenKressBaluapurietal.2020, author = {Jessen, Christina and Kreß, Julia K. C. and Baluapuri, Apoorva and Hufnagel, Anita and Schmitz, Werner and Kneitz, Susanne and Roth, Sabine and Marquardt, Andr{\´e} and Appenzeller, Silke and Ade, Casten P. and Glutsch, Valerie and Wobser, Marion and Friedmann-Angeli, Jos{\´e} Pedro and Mosteo, Laura and Goding, Colin R. and Schilling, Bastian and Geissinger, Eva and Wolf, Elmar and Meierjohann, Svenja}, title = {The transcription factor NRF2 enhances melanoma malignancy by blocking differentiation and inducing COX2 expression}, series = {Oncogene}, volume = {39}, journal = {Oncogene}, issn = {0950-9232}, doi = {10.1038/s41388-020-01477-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235064}, pages = {6841-6855}, year = {2020}, abstract = {The transcription factor NRF2 is the major mediator of oxidative stress responses and is closely connected to therapy resistance in tumors harboring activating mutations in the NRF2 pathway. In melanoma, such mutations are rare, and it is unclear to what extent melanomas rely on NRF2. Here we show that NRF2 suppresses the activity of the melanocyte lineage marker MITF in melanoma, thereby reducing the expression of pigmentation markers. Intriguingly, we furthermore identified NRF2 as key regulator of immune-modulating genes, linking oxidative stress with the induction of cyclooxygenase 2 (COX2) in an ATF4-dependent manner. COX2 is critical for the secretion of prostaglandin E2 and was strongly induced by H\(_2\)O\(_2\) or TNFα only in presence of NRF2. Induction of MITF and depletion of COX2 and PGE2 were also observed in NRF2-deleted melanoma cells in vivo. Furthermore, genes corresponding to the innate immune response such as RSAD2 and IFIH1 were strongly elevated in absence of NRF2 and coincided with immune evasion parameters in human melanoma datasets. Even in vitro, NRF2 activation or prostaglandin E2 supplementation blunted the induction of the innate immune response in melanoma cells. Transcriptome analyses from lung adenocarcinomas indicate that the observed link between NRF2 and the innate immune response is not restricted to melanoma.}, language = {en} } @article{HaydnHufnagelGrimmetal.2014, author = {Haydn, Johannes M. and Hufnagel, Anita and Grimm, Johannes and Maurus, Katja and Schartl, Manfred and Meierjohann, Svenja}, title = {The MAPK pathway as an apoptosis enhancer in melanoma}, series = {Oncotarget}, volume = {5}, journal = {Oncotarget}, number = {13}, issn = {1949-2553}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120649}, pages = {5040-53}, year = {2014}, abstract = {Inhibition of RAF/MEK/ERK signaling is beneficial for many patients with BRAFV600E-mutated melanoma. However, primary and secondary resistances restrict long-lasting therapy success. Combination therapies are therefore urgently needed. Here, we evaluate the cellular effect of combining a MEK inhibitor with a genotoxic apoptosis inducer. Strikingly, we observed that an activated MAPK pathway promotes in several melanoma cell lines the pro-apoptotic response to genotoxic stress, and MEK inhibition reduces intrinsic apoptosis. This goes along with MEK inhibitor induced increased RAS and P-AKT levels. The protective effect of the MEK inhibitor depends on PI3K signaling, which prevents the induction of pro-apoptotic PUMA that mediates apoptosis after DNA damage. We could show that the MEK inhibitor dependent feedback loop is enabled by several factors, including EGF receptor and members of the SPRED family. The simultaneous knockdown of SPRED1 and SPRED2 mimicked the effects of MEK inhibitor such as PUMA repression and protection from apoptosis. Our data demonstrate that MEK inhibition of BRAFV600E-positive melanoma cells can protect from genotoxic stress, thereby achieving the opposite of the intended anti-tumorigenic effect of the combination of MEK inhibitor with inducers of intrinsic apoptosis.}, language = {en} } @article{KressJessenMarquardtetal.2021, author = {Kreß, Julia Katharina Charlotte and Jessen, Christina and Marquardt, Andr{\´e} and Hufnagel, Anita and Meierjohann, Svenja}, title = {NRF2 enables EGFR signaling in melanoma cells}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {8}, issn = {1422-0067}, doi = {10.3390/ijms22083803}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260222}, year = {2021}, abstract = {Receptor tyrosine kinases (RTK) are rarely mutated in cutaneous melanoma, but the expression and activation of several RTK family members are associated with a proinvasive phenotype and therapy resistance. Epidermal growth factor receptor (EGFR) is a member of the RTK family and is only expressed in a subgroup of melanomas with poor prognosis. The insight into regulators of EGFR expression and activation is important for the understanding of the development of this malignant melanoma phenotype. Here, we describe that the transcription factor NRF2, the master regulator of the oxidative and electrophilic stress response, mediates the expression and activation of EGFR in melanoma by elevating the levels of EGFR as well as its ligands EGF and TGFα. ChIP sequencing data show that NRF2 directly binds to the promoter of EGF, which contains a canonical antioxidant response element. Accordingly, EGF is induced by oxidative stress and is also increased in lung adenocarcinoma and head and neck carcinoma with mutationally activated NRF2. In contrast, regulation of EGFR and TGFA occurs by an indirect mechanism, which is enabled by the ability of NRF2 to block the activity of the melanocytic lineage factor MITF in melanoma. MITF effectively suppresses EGFR and TGFA expression and therefore serves as link between NRF2 and EGFR. As EGFR was previously described to stimulate NRF2 activity, the mutual activation of NRF2 and EGFR pathways was investigated. The presence of NRF2 was necessary for full EGFR pathway activation, as NRF2-knockout cells showed reduced AKT activation in response to EGF stimulation compared to controls. Conversely, EGF led to the nuclear localization and activation of NRF2, thereby demonstrating that NRF2 and EGFR are connected in a positive feedback loop in melanoma. In summary, our data show that the EGFR-positive melanoma phenotype is strongly supported by NRF2, thus revealing a novel maintenance mechanism for this clinically challenging melanoma subpopulation.}, language = {en} } @article{MeierjohannHufnagelWendeetal.2010, author = {Meierjohann, Svenja and Hufnagel, Anita and Wende, Elisabeth and Kleinschmidt, Markus A. and Wolf, Katarina and Friedl, Peter and Gaubatz, Stefan and Schartl, Manfred}, title = {MMP13 mediates cell cycle progression in melanocytes and melanoma cells: in vitro studies of migration and proliferation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68335}, year = {2010}, abstract = {Background: Melanoma cells are usually characterized by a strong proliferative potential and efficient invasive migration. Among the multiple molecular changes that are recorded during progression of this disease, aberrant activation of receptor tyrosine kinases (RTK) is often observed. Activation of matrix metalloproteases goes along with RTK activation and usually enhances RTK-driven migration. The purpose of this study was to examine RTKdriven three-dimensional migration of melanocytes and the pro-tumorigenic role of matrix metalloproteases for melanocytes and melanoma cells. Results: Using experimental melanocyte dedifferentiation as a model for early melanomagenesis we show that an activated EGF receptor variant potentiates migration through three-dimensional fibrillar collagen. EGFR stimulation also resulted in a strong induction of matrix metalloproteases in a MAPK-dependent manner. However, neither MAPK nor MMP activity were required for migration, as the cells migrated in an entirely amoeboid mode. Instead, MMPs fulfilled a function in cell cycle regulation, as their inhibition resulted in strong growth inhibition of melanocytes. The same effect was observed in the human melanoma cell line A375 after stimulation with FCS. Using sh- and siRNA techniques, we could show that MMP13 is the protease responsible for this effect. Along with decreased proliferation, knockdown of MMP13 strongly enhanced pigmentation of melanocytes. Conclusions: Our data show for the first time that growth stimuli are mediated via MMP13 in melanocytes and melanoma, suggesting an autocrine MMP13-driven loop. Given that MMP13-specific inhibitors are already developed, these results support the evaluation of these inhibitors in the treatment of melanoma.}, subject = {Medizin}, language = {en} } @article{GrimmHufnagelWobseretal.2018, author = {Grimm, Johannes and Hufnagel, Anita and Wobser, Marion and Borst, Andreas and Haferkamp, Sebastian and Houben, Roland and Meierjohann, Svenja}, title = {BRAF inhibition causes resilience of melanoma cell lines by inducing the secretion of FGF1}, series = {Oncogenesis}, volume = {7}, journal = {Oncogenesis}, number = {71}, doi = {10.1038/s41389-018-0082-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177261}, year = {2018}, abstract = {Approximately half of all melanoma patients harbour activating mutations in the serine/threonine kinase BRAF. This is the basis for one of the main treatment strategies for this tumor type, the targeted therapy with BRAF and MEK inhibitors. While the initial responsiveness to these drugs is high, resistance develops after several months, frequently at sites of the previously responding tumor. This indicates that tumor response is incomplete and that a certain tumor fraction survives even in drug-sensitive patients, e.g., in a therapy-induced senescence-like state. Here, we show in several melanoma cell lines that BRAF inhibition induces a secretome with stimulating effect on fibroblasts and naive melanoma cells. Several senescence-associated factors were found to be transcribed and secreted in response to BRAF or MEK inhibition, among them members of the fibroblast growth factor family. We identified the growth factor FGF1 as mediator of resilience towards BRAF inhibition, which limits the pro-apoptotic effects of the drug and activates fibroblasts to secrete HGF. FGF1 regulation was mediated by the PI3K pathway and by FRA1, a direct target gene of the MAPK pathway. When FGFR inhibitors were applied in parallel to BRAF inhibitors, resilience was broken, thus providing a rationale for combined therapeutical application.}, language = {en} }