@article{KuehnPradel2010, author = {Kuehn, Andrea and Pradel, Gabriele}, title = {The Coming-Out of Malaria Gametocytes [Review Article]}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68196}, year = {2010}, abstract = {The tropical disease malaria, which results in more than one million deaths annually, is caused by protozoan parasites of the genus Plasmodium and transmitted by blood-feeding Anopheline mosquitoes. Parasite transition from the human host to the mosquito vector is mediated by gametocytes, sexual stages that are formed in human erythrocytes, which therefore play a crucial part in the spread of the tropical disease. The uptake by the blood-feeding mosquito triggers important molecular and cellular changes in the gametocytes, thus mediating the rapid adjustment of the parasite from the warm-blooded host to the insect host and subsequently initiating reproduction. The contact with midgut factors triggers gametocyte activation and results in their egress from the enveloping erythrocyte, which then leads to gamete formation and fertilization. This review summarizes recent findings on the role of gametocytes during transmission to themosquito and particularly focuses on the molecular mechanisms underlying gametocyte activation and emergence from the host erythrocyte during gametogenesis.}, subject = {Malaria}, language = {en} } @article{vonBohlKuehnSimonetal.2015, author = {von Bohl, Andreas and Kuehn, Andrea and Simon, Nina and Nkwouano Ngongang, Vanesa and Spehr, Marc and Baumeister, Stefan and Przyborski, Jude M. and Fischer, Rainer and Pradel, Gabriele}, title = {A WD40-repeat protein unique to malaria parasites associates with adhesion protein complexes and is crucial for blood stage progeny}, series = {Malaria Journal}, volume = {14}, journal = {Malaria Journal}, number = {435}, doi = {10.1186/s12936-015-0967-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139728}, year = {2015}, abstract = {Background During development in human erythrocytes, Plasmodium falciparum parasites display a remarkable number of adhesive proteins on their plasma membrane. In the invasive merozoites, these include members of the PfMSP1 and PfAMA1/RON complexes, which facilitate contact between merozoites and red blood cells. In gametocytes, sexual precursor cells mediating parasite transmission to the mosquito vector, plasma membrane-associated proteins primarily belong to the PfCCp and 6-cys families with roles in fertilization. This study describes a newly identified WD40-repeat protein unique to Plasmodium species that associates with adhesion protein complexes of both merozoites and gametocytes. Methods The WD40-repeat protein-like protein PfWLP1 was identified via co-immunoprecipitation assays followed by mass spectrometry and characterized using biochemical and immunohistochemistry methods. Reverse genetics were employed for functional analysis. Results PfWLP1 is expressed both in schizonts and gametocytes. In mature schizonts, the protein localizes underneath the merozoite micronemes and interacts with PfAMA1, while in gametocytes PfWLP1 primarily accumulates underneath the plasma membrane and associates with PfCCp1 and Pfs230. Reverse genetics failed to disrupt the pfwlp1 gene, while haemagglutinin-tagging was feasible, suggesting a crucial function for PfWLP1 during blood stage replication. Conclusions This is the first report on a plasmodial WD40-repeat protein associating with cell adhesion proteins. Since WD40 domains are known to mediate protein-protein contact by serving as a rigid scaffold for protein interactions, the presented data suggest that PfWLP1 supports the stability of adhesion protein complexes of the plasmodial blood stages.}, language = {en} }