@phdthesis{Li2014, author = {Li, Xiang}, title = {Molecular imaging of inflammation in atherosclerosis: Preclinical study in Apolipoprotein E-Deficient mice and preliminary evaluation in human using positron emission tomography}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-104622}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Motivation and Aim: Cardiovascular disease has been the leading cause of mortality and morbidity throughout the world. In developed countries, cardiovascular diseases are already responsible for a majority of deaths and will become the pre-eminent health problem worldwide (1,2). Rupture of atherosclerotic plaque accounts for approximately 70\% of fatal acute myocardial infarction and sudden heart deaths. Conventional criterias for the diagnosis of "vulnerable plaques" are calcified nodules, yellow appearance of plaque, a thin cap, a large lipid core, severe luminal stenosis, intraplaque hemorrhage, inflammation, thrombogenicity, and plaque injury (3-5). Noninvasive diagnosis of vulnerable plaque still remains a great challenge and a huge research prospect, which triggered us to investigate the feasibility of PET imaging on the evaluation of atherosclerosis. Nuclear imaging of atherosclerosis, especially co-registered imaging modalities, could provide a promising diagnostic tool including both anatomy and activities to identify vulnerable atherosclerotic plaque or early detection of inflammatory endothelium at risk. Furthermore, the development of specific imaging tracers for clinical applications is also a challenging task. The aim of this work was to assess the potential of novel PET imaging probes associated with intra-plaque inflammation on animal models and in human respectively. Methods In this work, several molecular imaging modalities were employed for evaluation of atherosclerosis. They included Positron emission tomography / Computed tomography (PET/CT) for human studies, and micro-PET, autoradiography and high-resolution magnetic resonance imaging (MRI) for animal studies. Radiotracers for PET imaging included the glucose analogue 18F-Fluorodeoxyglucose (18F-FDG), the somatostatin receptor avide tracer 68Ga-DOTATATE, and the Gallium-68 labeled fucoidan (68Ga-Fucoidan), which was developed as a PET tracer to detect endothelial P-selectin, which overexpressed at early stage of atherosclerosis and endothelial overlying activated plaque. Tracer's capabilities were firstly assessed on cellular level in vitro. Subsequently, Animal studies were conducted in two animal models: 1, Apolipoprotein E (ApoE-/-) mice having severe atherosclerotic plaque; 2, Lipopolysaccharide (LPS) -induced mice for receiving acute vascular inflammation. Corresponding analyses on protein and histological level were conducted as well to confirm our results. In human study, 16 patients with neuroendocrine tumors (NETs) were investigated on imaging vascular inflammation. These patients had undergone both 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT for staging or restaging within 6 weeks. 16 patients were randomized into two groups: high-risk group and low-risk group. Uptake ratio of both tracers from two groups were compared and correlated with common cardiovascular risk factors. Results and Conclusion In murine study, the expression of somatostatin receptor 2, which is the main bio-target of 68Ga-DOTATATE on macrophage/monocyte was confirmed by flow cytometry and immunohistochemistry. Prospectively, high specific accumulation of 68Ga-DOTATATE to the macrophage within the plaques was observed in aorta lesions by autoradiography and by micro-PET. In study with 68Ga-fucoidan, a strong expression of P-selectin on active endothelium overlying on inflamed plaque but weaker on inactive plaques was confirmed. Specific focal uptake of 68Ga-fucoidan were detected at aorta segments by micro-PET, and correlated with high-resolution magnetic resonance imaging (MRI), which was used to characterize the morphology of plaques. 68Ga-fucoidan also showed a greater affinity to active inflamed plaque in comparison of inactive fibrous plaque, which was assessed by autoradiography. Specificity of 68Ga-DOTATATE and 68Ga-fucoidan were confirmed by ex-vivo blocking autoradiography and in vivo blocking PET imaging respectively. In human study, focal uptake of both 18F-FDG and 68Ga-DOTATATE was detected. Analyzing concordance of two tracers' uptake ratio, Out of the 37 sites with highest focal 68Ga-DOTATATE uptake, 16 (43.2\%) also had focal 18F-FDG uptake. Of 39 sites with highest 18F-FDG uptake, only 11 (28.2\%) had a colocalized 68Ga-DOTATATE accumulation. Correlated tracers' uptake and calcium burden and risk factors, Mean target-to-background ratio (TBR) of 68Ga-DOTATATE correlated significantly with the presence of calcified plaques (r=0.52), hypertension (r=0.60), age (r=0.56) and uptake of 18F-FDG (r=0.64). TBRmean of 18F-FDG correlated significantly only with hypertension (r=0.58; p<0.05). Additionally, TBRmean of 68Ga-DOTATATE is significant higher in the high risk group while TBRmean of 18F-FDG is not. In conclusion, we evaluated vascular inflammation of atherosclerosis non-invasively using the two PET tracers: 68Ga-DOTATATE and 68Ga-Fucoidan. 68Ga-DOTATATE show specific affinity to infiltrated macrophage within the plaques. 68Ga-Fucoidan may hold the potential to discriminate between active and inactive atherosclerotic plaques in terms of variant accumulation on different-types of plaques. PET as leading molecular imaging technique provides superiority in assessing cellular activity, which is pivotal for understanding internal activity of atherosclerotic plaques. Since diagnosis of atherosclerosis is a complex and multi-dimensional task. More integrated imaging technology such as PET/MRI, faster imaging algorithm, more efficient radiotracer are required for further development of atherosclerosis imaging,}, subject = {Arteriosklerose}, language = {en} } @article{LiSamnickLapaetal.2012, author = {Li, Xiang and Samnick, Samuel and Lapa, Constantin and Israel, Ina and Buck, Andreas K. and Kreissl, Michael C. and Bauer, Wolfgang}, title = {68Ga-DOTATATE PET/CT for the detection of inflammation of large arteries: correlation with18F-FDG, calcium burden and risk factors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76231}, year = {2012}, abstract = {Background: Ga-[1,4,7,10-tetraazacyclododecane-N,N0,N00,N000-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE) positron emission tomography (PET) is commonly used for the visualization of somatostatin receptor (SSTR)-positive neuroendocrine tumors. SSTR is also known to be expressed on macrophages, which play a major role in inflammatory processes in the walls of coronary arteries and large vessels. Therefore, imaging SSTR expression has the potential to visualize vulnerable plaques. We assessed 68Ga-DOTATATE accumulation in large vessels in comparison to 18F-2-fluorodeoxyglucose (FDG) uptake, calcified plaques (CPs), and cardiovascular risk factors. Methods: Sixteen consecutive patients with neuroendocrine tumors or thyroid cancer underwent both 68Ga-DOTATATE and 18F-FDG PET/CT for staging or restaging purposes. Detailed clinical data, including common cardiovascular risk factors, were recorded. For a separate assessment, they were divided into a high-risk and a low-risk group. In each patient, we calculated the maximum target-to-background ratio (TBR) of eight arterial segments. The correlation of the TBRmean of both tracers with risk factors including plaque burden was assessed. Results: The mean TBR of 68Ga-DOTATATE in all large arteries correlated significantly with the presence of CPs (r = 0.52; p < 0.05), hypertension (r = 0.60; p < 0.05), age (r = 0.56; p < 0.05), and uptake of 18F-FDG (r = 0.64; p < 0.01). There was one significant correlation between 18F-FDG uptake and hypertension (0.58; p < 0.05). Out of the 37 sites with the highest focal 68Ga-DOTATATE uptake, 16 (43.2\%) also had focal 18F-FDG uptake. Of 39 sites with the highest 18F-FDG uptake, only 11 (28.2\%) had a colocalized 68Ga-DOTATATE accumulation. Conclusions: In this series of cancer patients, we found a stronger association of increased 68Ga-DOTATATE uptake with known risk factors of cardiovascular disease as compared to 18F-FDG, suggesting a potential role for plaque imaging in large arteries. Strikingly, we found that focal uptake of 68Ga-DOTATATE and 18F-FDG does not colocalize in a significant number of lesions.}, subject = {Medizin}, language = {en} }