@article{RittnerSauerHackeletal.2014, author = {Rittner, Heike L. and Sauer, Reine-Solange and Hackel, Dagmar and Morschel, Laura and Sahlbach, Henrike and Wang, Ying and Mousa, Shaaban A. and Roewer, Norbert and Brack, Alexander}, title = {Toll like receptor (TLR)-4 as a regulator of peripheral endogenous opioid-mediated analgesia in inflammation}, doi = {10.1186/1744-8069-10-10}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110193}, year = {2014}, abstract = {Background Leukocytes containing opioid peptides locally control inflammatory pain. In the early phase of complete Freund's adjuvant (CFA)-induced hind paw inflammation, formyl peptides (derived e.g. from Mycobacterium butyricum) trigger the release of opioid peptides from neutrophils contributing to tonic basal antinociception. In the later phase we hypothesized that toll-like-receptor-(TLR)-4 activation of monocytes/macrophages triggers opioid peptide release and thereby stimulates peripheral opioid-dependent antinociception. Results In Wistar rats with CFA hind paw inflammation in the later inflammatory phase (48-96 h) systemic leukocyte depletion by cyclophosphamide (CTX) or locally injected naloxone (NLX) further decreased mechanical and thermal nociceptive thresholds. In vitro β-endorphin (β-END) content increased during human monocyte differentiation as well as in anti-inflammatory CD14+CD16- or non-classical M2 macrophages. Monocytes expressing TLR4 dose-dependently released β-END after stimulation with lipopolysaccharide (LPS) dependent on intracellular calcium. Despite TLR4 expression proinflammatory M1 and anti-inflammatory M2 macrophages only secreted opioid peptides in response to ionomycin, a calcium ionophore. Intraplantar injection of LPS as a TLR4 agonist into the inflamed paw elicited an immediate opioid- and dose-dependent antinociception, which was blocked by TAK-242, a small-molecule inhibitor of TLR4, or by peripheral applied NLX. In the later phase LPS lowered mechanical and thermal nociceptive thresholds. Furthermore, local peripheral TLR4 blockade worsened thermal and mechanical nociceptive pain thresholds in CFA inflammation. Conclusion Endogenous opioids from monocytes/macrophages mediate endogenous antinociception in the late phase of inflammation. Peripheral TLR4 stimulation acts as a transient counter-regulatory mechanism for inflammatory pain in vivo, and increases the release of opioid peptides from monocytes in vitro. TLR4 antagonists as new treatments for sepsis and neuropathic pain might unexpectedly transiently enhance pain by impairing peripheral opioid analgesia.}, language = {en} } @article{DavisYuKeenanetal.2013, author = {Davis, Lea K. and Yu, Dongmei and Keenan, Clare L. and Gamazon, Eric R. and Konkashbaev, Anuar I. and Derks, Eske M. and Neale, Benjamin M. and Yang, Jian and Lee, S. Hong and Evans, Patrick and Barr, Cathy L. and Bellodi, Laura and Benarroch, Fortu and Berrio, Gabriel Bedoya and Bienvenu, Oscar J. and Bloch, Michael H. and Blom, Rianne M. and Bruun, Ruth D. and Budman, Cathy L. and Camarena, Beatriz and Campbell, Desmond and Cappi, Carolina and Cardona Silgado, Julio C. and Cath, Danielle C. and Cavallini, Maria C. and Chavira, Denise A. and Chouinard, Sylvian and Conti, David V. and Cook, Edwin H. and Coric, Vladimir and Cullen, Bernadette A. and Deforce, Dieter and Delorme, Richard and Dion, Yves and Edlund, Christopher K. and Egberts, Karin and Falkai, Peter and Fernandez, Thomas V. and Gallagher, Patience J. and Garrido, Helena and Geller, Daniel and Girard, Simon L. and Grabe, Hans J. and Grados, Marco A. and Greenberg, Benjamin D. and Gross-Tsur, Varda and Haddad, Stephen and Heiman, Gary A. and Hemmings, Sian M. J. and Hounie, Ana G. and Illmann, Cornelia and Jankovic, Joseph and Jenike, Micheal A. and Kennedy, James L. and King, Robert A. and Kremeyer, Barbara and Kurlan, Roger and Lanzagorta, Nuria and Leboyer, Marion and Leckman, James F. and Lennertz, Leonhard and Liu, Chunyu and Lochner, Christine and Lowe, Thomas L. and Macciardi, Fabio and McCracken, James T. and McGrath, Lauren M. and Restrepo, Sandra C. Mesa and Moessner, Rainald and Morgan, Jubel and Muller, Heike and Murphy, Dennis L. and Naarden, Allan L. and Ochoa, William Cornejo and Ophoff, Roel A. and Osiecki, Lisa and Pakstis, Andrew J. and Pato, Michele T. and Pato, Carlos N. and Piacentini, John and Pittenger, Christopher and Pollak, Yehunda and Rauch, Scott L. and Renner, Tobias J. and Reus, Victor I. and Richter, Margaret A. and Riddle, Mark A. and Robertson, Mary M. and Romero, Roxana and Ros{\`a}rio, Maria C. and Rosenberg, David and Rouleau, Guy A. and Ruhrmann, Stephan and Ruiz-Linares, Andreas and Sampaio, Aline S. and Samuels, Jack and Sandor, Paul and Sheppard, Broke and Singer, Harvey S. and Smit, Jan H. and Stein, Dan J. and Strengman, E. and Tischfield, Jay A. and Valencia Duarte, Ana V. and Vallada, Homero and Van Nieuwerburgh, Flip and Veenstra-VanderWeele, Jeremy and Walitza, Susanne and Wang, Ying and Wendland, Jens R. and Westenberg, Herman G. M. and Shugart, Yin Yao and Miguel, Euripedes C. and McMahon, William and Wagner, Michael and Nicolini, Humberto and Posthuma, Danielle and Hanna, Gregory L. and Heutink, Peter and Denys, Damiaan and Arnold, Paul D. and Oostra, Ben A. and Nestadt, Gerald and Freimer, Nelson B. and Pauls, David L. and Wray, Naomi R. and Stewart, S. Evelyn and Mathews, Carol A. and Knowles, James A. and Cox, Nancy J. and Scharf, Jeremiah M.}, title = {Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture}, series = {PLoS Genetics}, volume = {9}, journal = {PLoS Genetics}, number = {10}, issn = {1553-7390}, doi = {10.1371/journal.pgen.1003864}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127377}, pages = {e1003864}, year = {2013}, abstract = {The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5\% accounted for 21\% of the TS heritability and 0\% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.}, language = {en} } @phdthesis{Wang2014, author = {Wang, Ying}, title = {Immune and peripheral endogenous opioid mechanisms of electroacupuncture analgesia}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98326}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {A precious treasure in traditional Chinese medicine (TCM), acupuncture played a vital and irreplaceable role in contributing to people's health in the thousands of years of Chinese history, and in 2010 was officially added to the "Representative List of the Intangible Cultural Heritage of Humanity" by the United Nations. Because of the side-effects of long-term drug therapy for pain, and the risks of dependency, acupuncture has been widely accepted as one of the most important alternative choice therapies for treating varieties of acute and chronic pain-related disorders. The clinical application and scientific mechanism research of acupuncture have therefore increased intensively in the last few decades. Besides hand acupuncture, other treatment approaches e.g. electroacupuncture (EA) have been widely accepted and applied as an important acupuncture-related technique for acupuncture analgesia (AA) research. The involvement of opioid peptides and receptors in acute AA has been shown via pre-EA application of opioid receptor/peptide antagonists. However, existing publications still cannot illuminate the answer to the following question: how does sustained antinociception happen by EA treatment? The hypothesis of opioid peptide-mediated tonic AA might be able to answer the question. In the first part of this thesis, the institution of a reproducible acupuncture treatment model as well as the endogenous opioid-related mechanisms was demonstrated. An anatomically-based three-dimensional (3D) rat model was established to exhibit a digital true-to-life organism, accurate acupoint position and EA treatment protocol on bilateral acupoint GB-30 Huantiao. The optimal EA treatment protocol (100 Hz, 2-3 mA, 0.1 ms, 20 min) at 0 and 24 h after induction of inflammatory pain by complete Freund's adjuvant (CFA) on conscious free-moving rats was then established. EA elicited significant sustained mechanical and thermal antinociception up to 144 h. Post-EA application of opioid receptors (mu opioid receptor, MOR; delta opioid receptor, DOR) antagonists naloxone (NLX) and naltrindole (NTI), or opioid peptide antibodies anti-beta-endorphin (anti-END), met-enkephalin (anti-ENK) or -dynorphin A (anti-DYN) could also block this effect at a late phase (96 h) of CFA post-EA, which suggested opioid-dependent tonic analgesia was produced by EA. Meanwhile, EA also reduced paw temperature and volume at 72-144 h post CFA indicating anti-inflammatory effects. Nociceptive thresholds were assessed by paw pressure threshold (Randall-Sellito) or paw withdrawal latency (Hargreaves) and an anti-inflammatory effect was evaluated by measurement of plantar temperature and volume of inflamed paw. The second part of the thesis further suggests the correlation between the chemokine CXCL10 (= interferon-gamma inducible protein 10, IP-10) and opioid peptides in EA-induced antinociception. Based on a comprehensive Cytokine Array of 29 cytokines, targeted cytokines interleukin (IL)-1alpha, interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, interleukin (IL)-4, interleukin (IL)-13, interferon (IFN)-gamma as well as CXCL10 were selected and quantified by enzyme-linked immunosorbent assay (ELISA), and real time reverse transcription-polymerase chain reaction (RT-PCR) quantification confirmed upregulation of CXCL10 mRNA at both 72 and 96 h. The following hyperalgesic assessment suggested the antinociceptive effect of CXCL10. The double immunostaining localizing opioid peptides with macrophages expressed the evident upregulation of CXCR3-receptor of CXCL10 in EA treated samples as well as the significant upregulation or downregulation of opioid peptides by repeated treatment of CXCL10 or antibody of CXCL10 via behavioral tests and immune staining. Subsequent immunoblotting measurements showed non-alteration of opioid receptor level by EA, indicating that the opioid receptors did not apparently contribute to AA in the present studies. In vitro, CXCL10 did not directly trigger opioid peptide END release from freshly isolated rat macrophages. This might implicate an indirect property of CXCL10 in vitro stimulating the opioid peptide-containing macrophages by requiring additional mediators in inflammatory tissue. In summary, this project intended to explore the peripheral opioid-dependent analgesic mechanisms of acupuncture with a novel 3D treatment rat model and put forward new information to support the pivot role of chemokine CXCL10 in mediating EA-induced tonic antinociception via peripheral opioid peptides.}, subject = {Elektroakupunktur}, language = {en} } @article{RittnerWangGehringeretal.2014, author = {Rittner, Heike L. and Wang, Ying and Gehringer, Rebekka and Mousa, Shaaban A. and Hackel, Dagmar and Brack, Alexander}, title = {CXCL10 Controls Inflammatory Pain via Opioid Peptide- Containing Macrophages in Electroacupuncture}, doi = {10.1371/journal.pone.0094696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112979}, year = {2014}, abstract = {Acupuncture is widely used for pain treatment in patients with osteoarthritis or low back pain, but molecular mechanisms remain largely enigmatic. In the early phase of inflammation neutrophilic chemokines direct opioid-containing neutrophils in the inflamed tissue and stimulate opioid peptide release and antinociception. In this study the molecular pathway and neuroimmune connections in complete Freund's adjuvant (CFA)-induced hind paw inflammation and electroacupuncture for peripheral pain control were analyzed. Free moving Wistar rats with hind paw inflammation were treated twice with electroacupuncture at GB30 (Huan Tiao - gall bladder meridian) (day 0 and 1) and analyzed for mechanical and thermal nociceptive thresholds. The cytokine profiles as well as the expression of opioid peptides were quantified in the inflamed paw. Electroacupuncture elicited long-term antinociception blocked by local injection of anti-opioid peptide antibodies (beta-endorphin, met-enkephalin, dynorphin A). The treatment altered the cytokine profile towards an anti-inflammatory pattern but augmented interferon (IFN)-gamma and the chemokine CXCL10 (IP-10: interferon gamma-inducible protein) protein and mRNA expression with concomitant increased numbers of opioid peptide-containing CXCR3+ macrophages. In rats with CFA hind paw inflammation without acupuncture repeated injection of CXCL10 triggered opioid-mediated antinociception and increase opioid-containing macrophages. Conversely, neutralization of CXCL10 time-dependently decreased electroacupuncture-induced antinociception and the number of infiltrating opioid peptide-expressing CXCR3+ macrophages. In summary, we describe a novel function of the chemokine CXCL10 - as a regulator for an increase of opioid-containing macrophages and antinociceptive mediator in inflammatory pain and as a key chemokine regulated by electroacupuncture.}, language = {en} }