@article{WaelbroeckCamusTastenoyetal.1993, author = {Waelbroeck, M. and Camus, J. and Tastenoy, M. and Lambrecht, G. and Mutschler, E. and Kropfgans, M. and Sperlich, J. and Wiesenberger, F. and Tacke, R. and Christophe, J.}, title = {Thermodynamics of antagonist binding to rat muscarinic \(M_2\) receptors: antimuscarinics of the pridinol, sila-pridinol, diphenidol and sila-diphenidol type}, series = {British Journal of Pharmacology}, volume = {109}, journal = {British Journal of Pharmacology}, number = {2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128439}, pages = {360-370}, year = {1993}, abstract = {1 We studied the effect of temperature on the binding to rat heart \(M_2\) muscarinic receptors of antagonists related to the carbon/silicon pairs pridinol/sila-pridinol and diphenidol/sila-diphenidol (including three germanium compounds) and six structurally related pairs of enantiomers [(R)- and (S)-procyclidine, (R)- and (S)-trihexyphenidyl, (R)- and (S)-tricyclamol, (R)- and (S)-trihexyphenidyl methiodide, (R)- and (S)-hexahydro-diphenidol and (R)- and (S)-hexbutinol]. Binding affinities were determined in competition experiments using \([^3H]\)-N-methyl-scopolamine chloride as radioligand. The reference drugs were scopolamine and N-methyl-scopolamine bromide. 2 The affinity of the antagonists either increased or decreased with temperature, van 't Hoff plots were linear in the 278-310°K temperature range. Binding of all antagonists was entropy driven. Enthalpy changes varied from large negative values (down to \(-29 kJ mol^{-1}\)) to large positive values (up to \(+ 30 kJ mol^{-1}\)). 3 (R)-configurated drugs had a 10 to 100 fold greater affinity for \(M_2\) receptors than the corresponding (S)-enantiomers. Enthalpy and entropy changes of the respective enantiomers were different but no consistent pattern was observed. 4 When silanols \((R_3SiOH)\) were compared to carbinols \((R_3COH)\), the affinity increase caused by C/Si exchange varied between 3 and 10 fold for achiral drugs but was negligible in the case of chiral drugs. Silanols induced more favourable enthalpy and less favourable entropy changes than the corresponding carbinols when binding. Organogermanium compounds \((R_4Ge)\) when compared to their silicon counterparts (R4Si) showed no significant difference in affinity as well as in enthalpy and entropy changes. 5 Exchange of a cyclohexyl by a phenyl moiety was associated with an increase or a decrease in drug affinity (depending on the absolute configuration in the case of chiral drugs) and generally also with a more favourable enthalpy change and a less favourable entropy change of drug binding. 6 Replacement of a pyrrolidino by a piperidino group and increasing the length of the alkylene chain bridging the amino group and the central carbon or silicon atom were associated with either an increase or a decrease of entropy and enthalpy changes of drug binding. However, there was no clear correlation between these structural variations and the thermodynamic effects. 7 Taken together, these results suggest that hydrogen bond-forming OH groups and, to a lesser extent, polarizable phenyl groups contribute significantly to the thermodynamics of interactions between these classes of muscarinic antagonists and \(M_2\) muscarinic receptors.}, language = {en} } @article{PfeifferRochlitzNoelkeetal.1990, author = {Pfeiffer, A. and Rochlitz, H. and Noelke, B. and Tacke, R. and Moser, U. and Mutschler, E. and Lambrecht, G.}, title = {Muscarinic receptors mediating acid secretion in isolated rat gastric parietal cells are of M3 type}, series = {Gastroenterology}, volume = {98}, journal = {Gastroenterology}, number = {1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128337}, pages = {218-222}, year = {1990}, abstract = {Five subtypes of muscarinic receptors have been identified by pharmacological and molecular biological methods. The muscarinic receptor subtype mediating acid secretion at the level of the parietal cell was unknown. Therefore, this study was performed to characterize muscarinic receptors on rat gastric parietal cells using the 3 subtype-selective antagonists hexahydrosiladifenidol and silahexocyclium, which have high affinity for glandular M3 subtypes, and AF-DX 116, which has high affinity to cardiac M2 receptors. The affinity of these antagonists was determined by radioligand binding experiments. In addition, their inhibitory potency on carbachol-stimulated inositol phosphate production was investigated. Inhibition of carbachol-stimulated aminopyrine uptake was used as an indirect measure of proton production. Both M3 antagonists, hexahydrosiladifenidol and silahexocyclium, had nanomolar affinities for parietal cell muscarinic receptors and potently antagonized inositol phosphate production with nanomolar Ki values. Silahexocyclium similarly antagonized aminopyrine accumulation while hexahydrosiladifenidol behaved as a noncompetitive antagonist. AF-DX 116 was a low-affinity ligand and a weak competitive antagonist at parietal-cell muscarinic receptors. It was concluded that muscarinic M3 receptors mediate acid secretion probably by activation of the phosphoinositide second messenger system in rat gastric parietal cells.}, language = {en} } @article{PfeifferHanackKoppetal.1990, author = {Pfeiffer, A. and Hanack, C. and Kopp, R. and Tacke, R. and Moser, U. and Mutschler, E. and Lambrecht, G. and Herawi, M.}, title = {Human Gastric Mucosa Expresses Glandular M3 Subtype of Muscarinic Receptors}, series = {Digestive Diseases and Sciences}, volume = {35}, journal = {Digestive Diseases and Sciences}, number = {12}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128286}, pages = {1468-1472}, year = {1990}, abstract = {Five subtypes of muscarinic receptors have been distinguished by pharmacological and molecular biological methods. This report characterizes the muscarinic subtype present in human gastric mucosa by radioligand binding studies. The receptor density was 27 ± 6 fmol/mg protein and the tritiated ligand N-methylscopolamine had an affinity of (Kn) 0.39 ± 0.08 nM (n = 11). The M1 receptor selective antagonist pirenzepine and the M2 receptor selective ligand AF-DX 116 had low affinities of 148 ± 32 nM (n = 13) and 4043 ± 1011 nM (n = 3) K n , respectively. The glandular M3 antagonists hexahydrosiladifenidol and silahexocyclium had high affinities ofKn 78 ± 23 nM (n = 5) and 5.6 ± 1.8 nM (n = 3). The agonist carbachol interacted with a single low-affinity site and binding was insensitive to modulation by guanine nucleotides. Antagonist and agonist binding studies thus showed an affinity profile typical of M3 receptors of the glandular type.}, language = {en} } @article{WaelbroeckCamusTastenoyetal.1994, author = {Waelbroeck, M. and Camus, J. and Tastenoy, M. and Feifel, R. and Mutschler, E. and Tacke, R. and Strohmann, C. and Rafeiner, K. and Rodrigues de Miranda, J. F. and Lambrecht, G.}, title = {Binding and functional properties of hexocyclium and sila-hexocyclium derivatives to muscarinic receptor suhtypes}, series = {British Journal of Pharmacology}, volume = {112}, journal = {British Journal of Pharmacology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128265}, pages = {505-514}, year = {1994}, abstract = {1 We have compared the binding properties of several hexocyclium and sila-hexocyclium derivatives to muscarinic Ml receptors (in rat brain, human neuroblastoma (NB-OK I) cells and calf superior cervical ganglia), rat heart M2 receptors, rat pancreas M3 receptors and M4 receptors in rat striatum, with their functional antimuscarinic properties in rabbit vas deferens (Ml/M4-like), guinea-pig atria (M2), and guinea-pig ileum (M3) muscarinic receptors. 2 Si la-substitution (C/Si exchange) of hexocyclium (~ sila-hexocyclium) and demethyl-hexocyclium (~demethyl-sila-hexocyclium) did not significantly affect their affinities for muscarinic receptors. By contrast, sila-substitution of demethoxy-hexocyclium increased its affinity 2 to 3 fold for all the muscarinic receptor subtypes studied. 3 The p-fluoro- and p-chloro-derivatives of sila-hexocyclium had lower affinities than the parent compound at the four receptor subtypes, in binding and pharmacological studies. 4 In binding studies, o-methoxy-sila-hexocyclium (Ml = M4 ~ M3 ~ M2) had a much lower affinity than sila-hexocyclium for the four receptor subtypes, and discriminated the receptor subtypes more poorly than sila-hexocyclium (Ml = M3> M4> M2)' This is in marked contrast with the very clear selectivity of demethoxy-sila-hexocyclium for the prejunctional MtlM4-like heteroreceptors in rabbit vas deferens. 5 The tertiary amines demethyl-hexocyclium, demethyl-sila-hexocyclium and demethyl-o-methoxy-silahexocyclium had 10 to 30 fold lower affinities than the corresponding quaternary ammonium derivatives.}, language = {en} }