@article{GreefrathOldenburgSilleretal.2023, author = {Greefrath, Gilbert and Oldenburg, Reinhard and Siller, Hans-Stefan and Ulm, Volker and Weigand, Hans-Georg}, title = {Mathematics students' characteristics of basic mental models of the derivative}, series = {Journal f{\"u}r Mathematik-Didaktik}, volume = {44}, journal = {Journal f{\"u}r Mathematik-Didaktik}, number = {1}, issn = {0173-5322}, doi = {10.1007/s13138-022-00207-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324317}, pages = {143-169}, year = {2023}, abstract = {The concept of derivative is characterised with reference to four basic mental models. These are described as theoretical constructs based on theoretical considerations. The four basic mental models—local rate of change, tangent slope, local linearity and amplification factor—are not only quantified empirically but are also validated. To this end, a test instrument for measuring students' characteristics of basic mental models is presented and analysed regarding quality criteria. Mathematics students (n = 266) were tested with this instrument. The test results show that the four basic mental models of the derivative can be reconstructed among the students with different characteristics. The tangent slope has the highest agreement values across all tasks. The agreement on explanations based on the basic mental model of rate of change is not as strongly established among students as one would expect due to framework settings in the school system by means of curricula and educational standards. The basic mental model of local linearity plays a rather subordinate role. The amplification factor achieves the lowest agreement values. In addition, cluster analysis was conducted to identify different subgroups of the student population. Moreover, the test results can be attributed to characteristics of the task types as well as to the students' previous experiences from mathematics classes by means of qualitative interpretation. These and other results of students' basic mental models of the derivative are presented and discussed in detail.}, language = {en} } @article{GreefrathOldenburgSilleretal.2021, author = {Greefrath, Gilbert and Oldenburg, Reinhard and Siller, Hans-Stefan and Ulm, Volker and Weigand, Hans-Georg}, title = {Basic Mental Models of Integrals - Theoretical Conception, Development of a Test Instrument, and first Results}, series = {ZDM - Mathematics Education}, volume = {53}, journal = {ZDM - Mathematics Education}, issn = {1863-9690}, doi = {10.1007/s11858-020-01207-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232830}, pages = {649-661}, year = {2021}, abstract = {A basic mental model (BMM—in German 'Grundvorstellung') of a mathematical concept is a content-related interpretation that gives meaning to this concept. This paper defines normative and individual BMMs and concretizes them using the integral as an example. Four BMMs are developed about the concept of definite integral, sometimes used in specific teaching approaches: the BMMs of area, reconstruction, average, and accumulation. Based on theoretical work, in this paper we ask how these BMMs could be identified empirically. A test instrument was developed, piloted, validated and applied with 428 students in first-year mathematics courses. The test results show that the four normative BMMs of the integral can be detected and separated empirically. Moreover, the results allow a comparison of the existing individual BMMs and the requested normative BMMs. Consequences for future developments are discussed.}, language = {en} }