@article{AhmedZeeshanHuberetal.2014, author = {Ahmed, Zeeshan and Zeeshan, Saman and Huber, Claudia and Hensel, Michael and Schomburg, Dietmar and M{\"u}nch, Richard and Eylert, Eva and Eisenreich, Wolfgang and Dandekar, Thomas}, title = {'Isotopo' a database application for facile analysis and management of mass isotopomer data}, series = {Database}, volume = {2014}, journal = {Database}, number = {bau077}, doi = {10.1093/database/bau077}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120102}, year = {2014}, abstract = {The composition of stable-isotope labelled isotopologues/isotopomers in metabolic products can be measured by mass spectrometry and supports the analysis of pathways and fluxes. As a prerequisite, the original mass spectra have to be processed, managed and stored to rapidly calculate, analyse and compare isotopomer enrichments to study, for instance, bacterial metabolism in infection. For such applications, we provide here the database application 'Isotopo'. This software package includes (i) a database to store and process isotopomer data, (ii) a parser to upload and translate different data formats for such data and (iii) an improved application to process and convert signal intensities from mass spectra of \(^{13}C\)-labelled metabolites such as tertbutyldimethylsilyl-derivatives of amino acids. Relative mass intensities and isotopomer distributions are calculated applying a partial least square method with iterative refinement for high precision data. The data output includes formats such as graphs for overall enrichments in amino acids. The package is user-friendly for easy and robust data management of multiple experiments.}, language = {en} } @article{CecilGentschevAdelfingeretal.2019, author = {Cecil, Alexander and Gentschev, Ivaylo and Adelfinger, Marion and Dandekar, Thomas and Szalay, Aladar A.}, title = {Vaccinia virus injected human tumors: oncolytic virus efficiency predicted by antigen profiling analysis fitted boolean models}, series = {Bioengineered}, volume = {10}, journal = {Bioengineered}, number = {1}, doi = {10.1080/21655979.2019.1622220}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200507}, pages = {190-196}, year = {2019}, abstract = {Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a promising approach for cancer therapy. Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a therapeutic potential in treating human prostate and hepatocellular carcinomas in xenografted mice. In this study, we describe the use of dynamic boolean modeling for tumor growth prediction of vaccinia virus-injected human tumors. Antigen profiling data of vaccinia virus GLV-1h68-injected human xenografted mice were obtained, analyzed and used to calculate differences in the tumor growth signaling network by tumor type and gender. Our model combines networks for apoptosis, MAPK, p53, WNT, Hedgehog, the T-killer cell mediated cell death, Interferon and Interleukin signaling networks. The in silico findings conform very well with in vivo findings of tumor growth. Similar to a previously published analysis of vaccinia virus-injected canine tumors, we were able to confirm the suitability of our boolean modeling for prediction of human tumor growth after virus infection in the current study as well. In summary, these findings indicate that our boolean models could be a useful tool for testing of the efficacy of VACV-mediated cancer therapy already before its use in human patients.}, language = {en} } @article{AmpattuHagmannLiangetal.2017, author = {Ampattu, Biju Joseph and Hagmann, Laura and Liang, Chunguang and Dittrich, Marcus and Schl{\"u}ter, Andreas and Blom, Jochen and Krol, Elizaveta and Goesmann, Alexander and Becker, Anke and Dandekar, Thomas and M{\"u}ller, Tobias and Schoen, Christoph}, title = {Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence}, series = {BMC Genomics}, volume = {18}, journal = {BMC Genomics}, number = {282}, doi = {10.1186/s12864-017-3616-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157534}, year = {2017}, abstract = {Background: Commensal bacteria like Neisseria meningitidis sometimes cause serious disease. However, genomic comparison of hyperinvasive and apathogenic lineages did not reveal unambiguous hints towards indispensable virulence factors. Here, in a systems biological approach we compared gene expression of the invasive strain MC58 and the carriage strain α522 under different ex vivo conditions mimicking commensal and virulence compartments to assess the strain-specific impact of gene regulation on meningococcal virulence. Results: Despite indistinguishable ex vivo phenotypes, both strains differed in the expression of over 500 genes under infection mimicking conditions. These differences comprised in particular metabolic and information processing genes as well as genes known to be involved in host-damage such as the nitrite reductase and numerous LOS biosynthesis genes. A model based analysis of the transcriptomic differences in human blood suggested ensuing metabolic flux differences in energy, glutamine and cysteine metabolic pathways along with differences in the activation of the stringent response in both strains. In support of the computational findings, experimental analyses revealed differences in cysteine and glutamine auxotrophy in both strains as well as a strain and condition dependent essentiality of the (p)ppGpp synthetase gene relA and of a short non-coding AT-rich repeat element in its promoter region. Conclusions: Our data suggest that meningococcal virulence is linked to transcriptional buffering of cryptic genetic variation in metabolic genes including global stress responses. They further highlight the role of regulatory elements for bacterial virulence and the limitations of model strain approaches when studying such genetically diverse species as N. meningitidis.}, language = {en} } @article{FoersterBeisserGrohmeetal.2012, author = {F{\"o}rster, Frank and Beisser, Daniela and Grohme, Markus A. and Liang, Chunguang and Mali, Brahim and Siegl, Alexander Matthias and Engelmann, Julia C. and Shkumatov, Alexander V. and Schokraie, Elham and M{\"u}ller, Tobias and Schn{\"o}lzer, Martina and Schill, Ralph O. and Frohme, Marcus and Dandekar, Thomas}, title = {Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations}, series = {Bioinformatics and biology insights}, volume = {6}, journal = {Bioinformatics and biology insights}, doi = {10.4137/BBI.S9150}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123089}, pages = {69-96}, year = {2012}, abstract = {Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade \(Milnesium\) \(tardigradum\) were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from \(Hypsibius\) \(dujardini\), revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for \(M.\) \(tardigradum\) are different from typical motifs known from higher animals. \(M.\) \(tardigradum\) and \(H.\) \(dujardini\) protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of \(M.\) \(tardigradum\). These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and \(M.\) \(tardigradum\) in particular so highly stress resistant.}, language = {en} } @article{DandekarSibbald1990, author = {Dandekar, Thomas and Sibbald, Peter R.}, title = {Trans-splicing of pre-mRNA is predicted to occur in a wide range of organisms including vertebrates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29798}, year = {1990}, abstract = {No abstract available}, language = {en} } @article{OsmanogluKhaledAlSeiariAlKhoorietal.2021, author = {Osmanoglu, {\"O}zge and Khaled AlSeiari, Mariam and AlKhoori, Hasa Abduljaleel and Shams, Shabana and Bencurova, Elena and Dandekar, Thomas and Naseem, Muhammad}, title = {Topological Analysis of the Carbon-Concentrating CETCH Cycle and a Photorespiratory Bypass Reveals Boosted CO\(_2\)-Sequestration by Plants}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {9}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2021.708417}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249260}, year = {2021}, abstract = {Synthetically designed alternative photorespiratory pathways increase the biomass of tobacco and rice plants. Likewise, some in planta-tested synthetic carbon-concentrating cycles (CCCs) hold promise to increase plant biomass while diminishing atmospheric carbon dioxide burden. Taking these individual contributions into account, we hypothesize that the integration of bypasses and CCCs will further increase plant productivity. To test this in silico, we reconstructed a metabolic model by integrating photorespiration and photosynthesis with the synthetically designed alternative pathway 3 (AP3) enzymes and transporters. We calculated fluxes of the native plant system and those of AP3 combined with the inhibition of the glycolate/glycerate transporter by using the YANAsquare package. The activity values corresponding to each enzyme in photosynthesis, photorespiration, and for synthetically designed alternative pathways were estimated. Next, we modeled the effect of the crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (CETCH), which is a set of natural and synthetically designed enzymes that fix CO₂ manifold more than the native Calvin-Benson-Bassham (CBB) cycle. We compared estimated fluxes across various pathways in the native model and under an introduced CETCH cycle. Moreover, we combined CETCH and AP3-w/plgg1RNAi, and calculated the fluxes. We anticipate higher carbon dioxide-harvesting potential in plants with an AP3 bypass and CETCH-AP3 combination. We discuss the in vivo implementation of these strategies for the improvement of C3 plants and in natural high carbon harvesters.}, language = {en} } @article{WangorschButtMarketal.2011, author = {Wangorsch, Gaby and Butt, Elke and Mark, Regina and Hubertus, Katharina and Geiger, J{\"o}rg and Dandekar, Thomas and Dittrich, Marcus}, title = {Time-resolved in silico modeling of fine-tuned cAMP signaling in platelets: feedback loops, titrated phosphorylations and pharmacological modulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69145}, year = {2011}, abstract = {Background: Hemostasis is a critical and active function of the blood mediated by platelets. Therefore, the prevention of pathological platelet aggregation is of great importance as well as of pharmaceutical and medical interest. Endogenous platelet inhibition is predominantly based on cyclic nucleotides (cAMP, cGMP) elevation and subsequent cyclic nucleotide-dependent protein kinase (PKA, PKG) activation. In turn, platelet phosphodiesterases (PDEs) and protein phosphatases counterbalance their activity. This main inhibitory pathway in human platelets is crucial for countervailing unwanted platelet activation. Consequently, the regulators of cyclic nucleotide signaling are of particular interest to pharmacology and therapeutics of atherothrombosis. Modeling of pharmacodynamics allows understanding this intricate signaling and supports the precise description of these pivotal targets for pharmacological modulation. Results: We modeled dynamically concentration-dependent responses of pathway effectors (inhibitors, activators, drug combinations) to cyclic nucleotide signaling as well as to downstream signaling events and verified resulting model predictions by experimental data. Experiments with various cAMP affecting compounds including antiplatelet drugs and their combinations revealed a high fidelity, fine-tuned cAMP signaling in platelets without crosstalk to the cGMP pathway. The model and the data provide evidence for two independent feedback loops: PKA, which is activated by elevated cAMP levels in the platelet, subsequently inhibits adenylyl cyclase (AC) but as well activates PDE3. By multi-experiment fitting, we established a comprehensive dynamic model with one predictive, optimized and validated set of parameters. Different pharmacological conditions (inhibition, activation, drug combinations, permanent and transient perturbations) are successfully tested and simulated, including statistical validation and sensitivity analysis. Downstream cyclic nucleotide signaling events target different phosphorylation sites for cAMP- and cGMP-dependent protein kinases (PKA, PKG) in the vasodilator-stimulated phosphoprotein (VASP). VASP phosphorylation as well as cAMP levels resulting from different drug strengths and combined stimulants were quantitatively modeled. These predictions were again experimentally validated. High sensitivity of the signaling pathway at low concentrations is involved in a fine-tuned balance as well as stable activation of this inhibitory cyclic nucleotide pathway. Conclusions: On the basis of experimental data, literature mining and database screening we established a dynamic in silico model of cyclic nucleotide signaling and probed its signaling sensitivity. Thoroughly validated, it successfully predicts drug combination effects on platelet function, including synergism, antagonism and regulatory loops.}, subject = {Vasodilatator-stimuliertes Phosphoprotein}, language = {en} } @article{DandekarTollervey1991, author = {Dandekar, Thomas and Tollervey, D.}, title = {Thirty-three nucleotides of 5' flanking sequence including the TATA box are necessary and sufficient for efficient U2 snRNA transcription in Schizosaccharomycespombe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29959}, year = {1991}, abstract = {No abstract available}, language = {en} } @article{NaseemDandekar2012, author = {Naseem, Muhammad and Dandekar, Thomas}, title = {The Role of Auxin-Cytokinin Antagonism in Plant-Pathogen Interactions}, series = {PLOS Pathogens}, volume = {8}, journal = {PLOS Pathogens}, number = {11}, doi = {10.1371/journal.ppat.1003026}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131901}, pages = {e1003026}, year = {2012}, abstract = {No abstract available.}, language = {en} } @article{OthmanNaseemAwadetal.2016, author = {Othman, Eman M. and Naseem, Muhammed and Awad, Eman and Dandekar, Thomas and Stopper, Helga}, title = {The Plant Hormone Cytokinin Confers Protection against Oxidative Stress in Mammalian Cells}, series = {PLoS One}, volume = {11}, journal = {PLoS One}, number = {12}, doi = {10.1371/journal.pone.0168386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147983}, pages = {e0168386}, year = {2016}, abstract = {Modulating key dynamics of plant growth and development, the effects of the plant hormone cytokinin on animal cells gained much attention recently. Most previous studies on cytokinin effects on mammalian cells have been conducted with elevated cytokinin concentration (in the μM range). However, to examine physiologically relevant dose effects of cytokinins on animal cells, we systematically analyzed the impact of kinetin in cultured cells at low and high concentrations (1nM-10μM) and examined cytotoxic and genotoxic conditions. We furthermore measured the intrinsic antioxidant activity of kinetin in a cell-free system using the Ferric Reducing Antioxidant Power assay and in cells using the dihydroethidium staining method. Monitoring viability, we looked at kinetin effects in mammalian cells such as HL60 cells, HaCaT human keratinocyte cells, NRK rat epithelial kidney cells and human peripheral lymphocytes. Kinetin manifests no antioxidant activity in the cell free system and high doses of kinetin (500 nM and higher) reduce cell viability and mediate DNA damage in vitro. In contrast, low doses (concentrations up to 100 nM) of kinetin confer protection in cells against oxidative stress. Moreover, our results show that pretreatment of the cells with kinetin significantly reduces 4-nitroquinoline 1-oxide mediated reactive oxygen species production. Also, pretreatment with kinetin retains cellular GSH levels when they are also treated with the GSH-depleting agent patulin. Our results explicitly show that low kinetin doses reduce apoptosis and protect cells from oxidative stress mediated cell death. Future studies on the interaction between cytokinins and human cellular pathway targets will be intriguing.}, language = {en} } @article{SbieraKunzWeigandetal.2019, author = {Sbiera, Silviu and Kunz, Meik and Weigand, Isabel and Deutschbein, Timo and Dandekar, Thomas and Fassnacht, Martin}, title = {The new genetic landscape of Cushing's disease: deubiquitinases in the spotlight}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {11}, issn = {2072-6694}, doi = {10.3390/cancers11111761}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193194}, pages = {1761}, year = {2019}, abstract = {Cushing's disease (CD) is a rare condition caused by adrenocorticotropic hormone (ACTH)-producing adenomas of the pituitary, which lead to hypercortisolism that is associated with high morbidity and mortality. Treatment options in case of persistent or recurrent disease are limited, but new insights into the pathogenesis of CD are raising hope for new therapeutic avenues. Here, we have performed a meta-analysis of the available sequencing data in CD to create a comprehensive picture of CD's genetics. Our analyses clearly indicate that somatic mutations in the deubiquitinases are the key drivers in CD, namely USP8 (36.5\%) and USP48 (13.3\%). While in USP48 only Met415 is affected by mutations, in USP8 there are 26 different mutations described. However, these different mutations are clustering in the same hotspot region (affecting in 94.5\% of cases Ser718 and Pro720). In contrast, pathogenic variants classically associated with tumorigenesis in genes like TP53 and BRAF are also present in CD but with low incidence (12.5\% and 7\%). Importantly, several of these mutations might have therapeutic potential as there are drugs already investigated in preclinical and clinical setting for other diseases. Furthermore, network and pathway analyses of all somatic mutations in CD suggest a rather unified picture hinting towards converging oncogenic pathways.}, language = {en} } @article{MergetKoetschanHackletal.2012, author = {Merget, Benjamin and Koetschan, Christian and Hackl, Thomas and F{\"o}rster, Frank and Dandekar, Thomas and M{\"u}ller, Tobias and Schultz, J{\"o}rg and Wolf, Matthias}, title = {The ITS2 Database}, series = {Journal of Visual Expression}, volume = {61}, journal = {Journal of Visual Expression}, number = {e3806}, doi = {10.3791/3806}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124600}, year = {2012}, abstract = {The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation. The ITS2 Database presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank accurately reannotated. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE and ProfDistS for multiple sequence-structure alignment calculation and Neighbor Joining tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.}, language = {en} } @article{VainshteinSanchezBrazmaetal.2010, author = {Vainshtein, Yevhen and Sanchez, Mayka and Brazma, Alvis and Hentze, Matthias W. and Dandekar, Thomas and Muckenthaler, Martina U.}, title = {The IronChip evaluation package: a package of perl modules for robust analysis of custom microarrays}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67869}, year = {2010}, abstract = {Background: Gene expression studies greatly contribute to our understanding of complex relationships in gene regulatory networks. However, the complexity of array design, production and manipulations are limiting factors, affecting data quality. The use of customized DNA microarrays improves overall data quality in many situations, however, only if for these specifically designed microarrays analysis tools are available. Results: The IronChip Evaluation Package (ICEP) is a collection of Perl utilities and an easy to use data evaluation pipeline for the analysis of microarray data with a focus on data quality of custom-designed microarrays. The package has been developed for the statistical and bioinformatical analysis of the custom cDNA microarray IronChip but can be easily adapted for other cDNA or oligonucleotide-based designed microarray platforms. ICEP uses decision tree-based algorithms to assign quality flags and performs robust analysis based on chip design properties regarding multiple repetitions, ratio cut-off, background and negative controls. Conclusions: ICEP is a stand-alone Windows application to obtain optimal data quality from custom-designed microarrays and is freely available here (see "Additional Files" section) and at: http://www.alice-dsl.net/evgeniy. vainshtein/ICEP/}, subject = {Microarray}, language = {en} } @article{KunzLiangNillaetal.2016, author = {Kunz, Meik and Liang, Chunguang and Nilla, Santosh and Cecil, Alexander and Dandekar, Thomas}, title = {The drug-minded protein interaction database (DrumPID) for efficient target analysis and drug development}, series = {Database}, volume = {2016}, journal = {Database}, doi = {10.1093/database/baw041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147369}, pages = {baw041}, year = {2016}, abstract = {The drug-minded protein interaction database (DrumPID) has been designed to provide fast, tailored information on drugs and their protein networks including indications, protein targets and side-targets. Starting queries include compound, target and protein interactions and organism-specific protein families. Furthermore, drug name, chemical structures and their SMILES notation, affected proteins (potential drug targets), organisms as well as diseases can be queried including various combinations and refinement of searches. Drugs and protein interactions are analyzed in detail with reference to protein structures and catalytic domains, related compound structures as well as potential targets in other organisms. DrumPID considers drug functionality, compound similarity, target structure, interactome analysis and organismic range for a compound, useful for drug development, predicting drug side-effects and structure-activity relationships.}, language = {en} } @article{KaltdorfSrivastavaGuptaetal.2016, author = {Kaltdorf, Martin and Srivastava, Mugdha and Gupta, Shishir K. and Liang, Chunguang and Binder, Jasmin and Dietl, Anna-Maria and Meir, Zohar and Haas, Hubertus and Osherov, Nir and Krappmann, Sven and Dandekar, Thomas}, title = {Systematic Identification of Anti-Fungal Drug Targets by a Metabolic Network Approach}, series = {Frontiers in Molecular Bioscience}, volume = {3}, journal = {Frontiers in Molecular Bioscience}, doi = {10.3389/fmolb.2016.00022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147396}, pages = {22}, year = {2016}, abstract = {New antimycotic drugs are challenging to find, as potential target proteins may have close human orthologs. We here focus on identifying metabolic targets that are critical for fungal growth and have minimal similarity to targets among human proteins. We compare and combine here: (I) direct metabolic network modeling using elementary mode analysis and flux estimates approximations using expression data, (II) targeting metabolic genes by transcriptome analysis of condition-specific highly expressed enzymes, and (III) analysis of enzyme structure, enzyme interconnectedness ("hubs"), and identification of pathogen-specific enzymes using orthology relations. We have identified 64 targets including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid biosynthesis including 18 targets validated from the literature, two validated and five currently examined in own genetic experiments, and 38 further promising novel target proteins which are non-orthologous to human proteins, involved in metabolism and are highly ranked drug targets from these pipelines.}, language = {en} } @article{GrebinykPrylutskaChepurnaetal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Chepurna, Oksana and Grebinyk, Sergii and Prylutskyy, Yuriy and Ritter, Uwe and Ohulchanskyy, Tymish Y. and Matyshevska, Olga and Dandekar, Thomas and Frohme, Marcus}, title = {Synergy of chemo- and photodynamic therapies with C\(_{60}\) Fullerene-Doxorubicin nanocomplex}, series = {Nanomaterials}, volume = {9}, journal = {Nanomaterials}, number = {11}, issn = {2079-4991}, doi = {10.3390/nano9111540}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193140}, year = {2019}, abstract = {A nanosized drug complex was explored to improve the efficiency of cancer chemotherapy, complementing it with nanodelivery and photodynamic therapy. For this, nanomolar amounts of a non-covalent nanocomplex of Doxorubicin (Dox) with carbon nanoparticle C\(_{60}\) fullerene (C\(_{60}\)) were applied in 1:1 and 2:1 molar ratio, exploiting C\(_{60}\) both as a drug-carrier and as a photosensitizer. The fluorescence microscopy analysis of human leukemic CCRF-CEM cells, in vitro cancer model, treated with nanocomplexes showed Dox's nuclear and C\(_{60}\)'s extranuclear localization. It gave an opportunity to realize a double hit strategy against cancer cells based on Dox's antiproliferative activity and C\(_{60}\)'s photoinduced pro-oxidant activity. When cells were treated with 2:1 C\(_{60}\)-Dox and irradiated at 405 nm the high cytotoxicity of photo-irradiated C\(_{60}\)-Dox enabled a nanomolar concentration of Dox and C\(_{60}\) to efficiently kill cancer cells in vitro. The high pro-oxidant and pro-apoptotic efficiency decreased IC\(_{50}\) 16, 9 and 7 × 10\(^3\)-fold, if compared with the action of Dox, non-irradiated nanocomplex, and C\(_{60}\)'s photodynamic effect, correspondingly. Hereafter, a strong synergy of therapy arising from the combination of C\(_{60}\)-mediated Dox delivery and C\(_{60}\) photoexcitation was revealed. Our data indicate that a combination of chemo- and photodynamic therapies with C\(_{60}\)-Dox nanoformulation provides a promising synergetic approach for cancer treatment.}, language = {en} } @article{NaseemSrivastavaDandekar2014, author = {Naseem, Muhammad and Srivastava, Mugdha and Dandekar, Thomas}, title = {Stem-cell-triggered immunity safeguards cytokinin enriched plant shoot apexes from pathogen infection}, series = {Frontiers in Plant Science}, volume = {5}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2014.00588}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118247}, pages = {588}, year = {2014}, abstract = {Intricate mechanisms discriminate between friends and foes in plants. Plant organs deploy overlapping and distinct protection strategies. Despite vulnerability to a plethora of pathogens, the growing tips of plants grow bacteria free. The shoot apical meristem (SAM) is among three stem cells niches, a self-renewable reservoir for the future organogenesis of leaf, stem, and flowers. How plants safeguard this high value growth target from infections was not known until now. Recent reports find the stem cell secreted 12-amino acid peptide CLV3p (CLAVATA3 peptide) is perceived by FLS2 (FLAGELLIN SENSING 2) receptor and activates the transcription of immunity and defense marker genes. No infection in the SAM of wild type plants and bacterial infection in clv3 and fls2 mutants illustrate this natural protection against infections. Cytokinins (CKs) are enriched in the SAM and regulate meristem activities by their involvement in stem cell signaling networks. Auxin mediates plant susceptibility to pathogen infections while CKs boost plant immunity. Here, in addition to the stem-cell-triggered immunity we also highlight a potential link between CK signaling and CLV3p mediated immune response in the SAM.}, language = {en} } @article{LiangRiosMiguelJaricketal.2021, author = {Liang, Chunguang and Rios-Miguel, Ana B. and Jarick, Marcel and Neurgaonkar, Priya and Girard, Myriam and Fran{\c{c}}ois, Patrice and Schrenzel, Jacques and Ibrahim, Eslam S. and Ohlsen, Knut and Dandekar, Thomas}, title = {Staphylococcus aureus transcriptome data and metabolic modelling investigate the interplay of Ser/Thr kinase PknB, its phosphatase Stp, the glmR/yvcK regulon and the cdaA operon for metabolic adaptation}, series = {Microorganisms}, volume = {9}, journal = {Microorganisms}, number = {10}, issn = {2076-2607}, doi = {10.3390/microorganisms9102148}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248459}, year = {2021}, abstract = {Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB\(^+\)) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB\(^-\)) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.}, language = {en} } @article{DandekarAhmedSamanetal.2013, author = {Dandekar, Thomas and Ahmed, Zeeshan and Saman, Zeeshan and Huber, Claudia and Hensel, Michael and Schomburg, Dietmar and M{\"u}nch, Richard and Eisenreich, Wolfgang}, title = {Software LS-MIDA for efficient mass isotopomer distribution analysis in metabolic modelling}, series = {BMC Bioinformatics}, journal = {BMC Bioinformatics}, doi = {10.1186/1471-2334-13-266}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-95882}, year = {2013}, abstract = {Background The knowledge of metabolic pathways and fluxes is important to understand the adaptation of organisms to their biotic and abiotic environment. The specific distribution of stable isotope labelled precursors into metabolic products can be taken as fingerprints of the metabolic events and dynamics through the metabolic networks. An open-source software is required that easily and rapidly calculates from mass spectra of labelled metabolites, derivatives and their fragments global isotope excess and isotopomer distribution. Results The open-source software "Least Square Mass Isotopomer Analyzer" (LS-MIDA) is presented that processes experimental mass spectrometry (MS) data on the basis of metabolite information such as the number of atoms in the compound, mass to charge ratio (m/e or m/z) values of the compounds and fragments under study, and the experimental relative MS intensities reflecting the enrichments of isotopomers in 13C- or 15 N-labelled compounds, in comparison to the natural abundances in the unlabelled molecules. The software uses Brauman's least square method of linear regression. As a result, global isotope enrichments of the metabolite or fragment under study and the molar abundances of each isotopomer are obtained and displayed. Conclusions The new software provides an open-source platform that easily and rapidly converts experimental MS patterns of labelled metabolites into isotopomer enrichments that are the basis for subsequent observation-driven analysis of pathways and fluxes, as well as for model-driven metabolic flux calculations.}, language = {en} } @article{KaltdorfBreitenbachKarletal.2023, author = {Kaltdorf, Martin and Breitenbach, Tim and Karl, Stefan and Fuchs, Maximilian and Kessie, David Komla and Psota, Eric and Prelog, Martina and Sarukhanyan, Edita and Ebert, Regina and Jakob, Franz and Dandekar, Gudrun and Naseem, Muhammad and Liang, Chunguang and Dandekar, Thomas}, title = {Software JimenaE allows efficient dynamic simulations of Boolean networks, centrality and system state analysis}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-022-27098-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313303}, year = {2023}, abstract = {The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity of mesenchymal stromal cells for differentiation into chondrocytes, osteoblasts and adipocytes and differentiation-specific network control focusses on wnt-, TGF-beta and PPAR-gamma signaling. JimenaE allows to study individual proteins, removal or adding interactions (or autocrine loops) and accurately quantifies effects as well as number of system states. (ii) Dynamical modelling of cell-cell interactions of plant Arapidopsis thaliana against Pseudomonas syringae DC3000: We analyze for the first time the pathogen perspective and its interaction with the host. We next provide a detailed analysis on how plant hormonal regulation stimulates specific proteins and who and which protein has which type and amount of network control including a detailed heatmap of the A.thaliana response distinguishing between two states of the immune response. (iii) In an immune response network of dendritic cells confronted with Aspergillus fumigatus, JimenaE calculates now accurately the specific values for centralities and protein-specific network control including chemokine and pattern recognition receptors.}, language = {en} } @article{GuptaKupperRatzkaetal.2015, author = {Gupta, Shishir K. and Kupper, Maria and Ratzka, Carolin and Feldhaar, Heike and Vilcinskas, Andreas and Gross, Roy and Dandekar, Thomas and F{\"o}rster, Frank}, title = {Scrutinizing the immune defence inventory of Camponotus floridanus applying total transcriptome sequencing}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {540}, doi = {10.1186/s12864-015-1748-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125279}, year = {2015}, abstract = {Background Defence mechanisms of organisms are shaped by their lifestyle, environment and pathogen pressure. Carpenter ants are social insects which live in huge colonies comprising genetically closely related individuals in high densities within nests. This lifestyle potentially facilitates the rapid spread of pathogens between individuals. In concert with their innate immune system, social insects may apply external immune defences to manipulate the microbial community among individuals and within nests. Additionally, carpenter ants carry a mutualistic intracellular and obligate endosymbiotic bacterium, possibly maintained and regulated by the innate immune system. Thus, different selective forces could shape internal immune defences of Camponotus floridanus. Results The immune gene repertoire of C. floridanus was investigated by re-evaluating its genome sequence combined with a full transcriptome analysis of immune challenged and control animals using Illumina sequencing. The genome was re-annotated by mapping transcriptome reads and masking repeats. A total of 978 protein sequences were characterised further by annotating functional domains, leading to a change in their original annotation regarding function and domain composition in about 8 \% of all proteins. Based on homology analysis with key components of major immune pathways of insects, the C. floridanus immune-related genes were compared to those of Drosophila melanogaster, Apis mellifera, and other hymenoptera. This analysis revealed that overall the immune system of carpenter ants comprises many components found in these insects. In addition, several C. floridanus specific genes of yet unknown functions but which are strongly induced after immune challenge were discovered. In contrast to solitary insects like Drosophila or the hymenopteran Nasonia vitripennis, the number of genes encoding pattern recognition receptors specific for bacterial peptidoglycan (PGN) and a variety of known antimicrobial peptide (AMP) genes is lower in C. floridanus. The comparative analysis of gene expression post immune-challenge in different developmental stages of C. floridanus suggests a stronger induction of immune gene expression in larvae in comparison to adults. Conclusions The comparison of the immune system of C. floridanus with that of other insects revealed the presence of a broad immune repertoire. However, the relatively low number of PGN recognition proteins and AMPs, the identification of Camponotus specific putative immune genes, and stage specific differences in immune gene regulation reflects Camponotus specific evolution including adaptations to its lifestyle.}, language = {en} } @article{DandekarRibesTollervey1989, author = {Dandekar, Thomas and Ribes, V. and Tollervey, David}, title = {Schizosaccharomyces pombe U4 small nuclear RNA closely resembles vertebrate U4 and is required for growth}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29771}, year = {1989}, abstract = {No abstract available}, language = {en} } @article{ShityakovSkorbFoersteretal.2021, author = {Shityakov, Sergey and Skorb, Ekaterina V. and F{\"o}rster, Carola Y. and Dandekar, Thomas}, title = {Scaffold Searching of FDA and EMA-Approved Drugs Identifies Lead Candidates for Drug Repurposing in Alzheimer's Disease}, series = {Frontiers in Chemistry}, volume = {9}, journal = {Frontiers in Chemistry}, issn = {2296-2646}, doi = {10.3389/fchem.2021.736509}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-248703}, year = {2021}, abstract = {Clinical trials of novel therapeutics for Alzheimer's Disease (AD) have consumed a significant amount of time and resources with largely negative results. Repurposing drugs already approved by the Food and Drug Administration (FDA), European Medicines Agency (EMA), or Worldwide for another indication is a more rapid and less expensive option. Therefore, we apply the scaffold searching approach based on known amyloid-beta (Aβ) inhibitor tramiprosate to screen the DrugCentral database (n = 4,642) of clinically tested drugs. As a result, menadione bisulfite and camphotamide substances with protrombogenic and neurostimulation/cardioprotection effects were identified as promising Aβ inhibitors with an improved binding affinity (ΔGbind) and blood-brain barrier permeation (logBB). Finally, the data was also confirmed by molecular dynamics simulations using implicit solvation, in particular as Molecular Mechanics Generalized Born Surface Area (MM-GBSA) model. Overall, the proposed in silico pipeline can be implemented through the early stage rational drug design to nominate some lead candidates for AD, which will be further validated in vitro and in vivo, and, finally, in a clinical trial.}, language = {en} } @article{DandekarFieselmannFischeretal.2014, author = {Dandekar, Thomas and Fieselmann, Astrid and Fischer, Eva and Popp, Jasmin and Hensel, Michael and Noster, Janina}, title = {Salmonella—how a metabolic generalist adopts an intracellular lifestyle during infection}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {4}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {191}, issn = {2235-2988}, doi = {10.3389/fcimb.2014.00191}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120686}, year = {2014}, abstract = {The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, "-omics" data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology.}, language = {en} } @article{DandekarFieselmannPoppetal.2012, author = {Dandekar, Thomas and Fieselmann, Astrid and Popp, Jasmin and Hensel, Michael}, title = {Salmonella enterica: a surprisingly well-adapted intracellular lifestyle}, series = {Frontiers in Microbiology}, journal = {Frontiers in Microbiology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123135}, year = {2012}, abstract = {The infectious intracellular lifestyle of Salmonella enterica relies on the adaptation to nutritional conditions within the Salmonella-containing vacuole (SCV) in host cells. We summarize latest results on metabolic requirements for Salmonella during infection. This includes intracellular phenotypes of mutant strains based on metabolic modeling and experimental tests, isotopolog profiling using (13)C-compounds in intracellular Salmonella, and complementation of metabolic defects for attenuated mutant strains towards a comprehensive understanding of the metabolic requirements of the intracellular lifestyle of Salmonella. Helpful for this are also genomic comparisons. We outline further recent studies and which analyses of intracellular phenotypes and improved metabolic simulations were done and comment on technical required steps as well as progress involved in the iterative refinement of metabolic flux models, analyses of mutant phenotypes, and isotopolog analyses. Salmonella lifestyle is well-adapted to the SCV and its specific metabolic requirements. Salmonella metabolism adapts rapidly to SCV conditions, the metabolic generalist Salmonella is quite successful in host infection.}, language = {en} } @article{DandekarFieselmannFischeretal.2015, author = {Dandekar, Thomas and Fieselmann, Astrid and Fischer, Eva and Popp, Jasmin and Hensel, Michael and Noster, Janina}, title = {Salmonella - how a metabolic generalist adopts an intracellular lifestyle during infection}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {4}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {191}, doi = {10.3389/fcimb.2014.00191}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149029}, year = {2015}, abstract = {The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, "-omics" data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology.}, language = {en} } @article{GuptaMinochaThapaetal.2022, author = {Gupta, Shishir K. and Minocha, Rashmi and Thapa, Prithivi Jung and Srivastava, Mugdha and Dandekar, Thomas}, title = {Role of the pangolin in origin of SARS-CoV-2: an evolutionary perspective}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {16}, issn = {1422-0067}, doi = {10.3390/ijms23169115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285995}, year = {2022}, abstract = {After the recent emergence of SARS-CoV-2 infection, unanswered questions remain related to its evolutionary history, path of transmission or divergence and role of recombination. There is emerging evidence on amino acid substitutions occurring in key residues of the receptor-binding domain of the spike glycoprotein in coronavirus isolates from bat and pangolins. In this article, we summarize our current knowledge on the origin of SARS-CoV-2. We also analyze the host ACE2-interacting residues of the receptor-binding domain of spike glycoprotein in SARS-CoV-2 isolates from bats, and compare it to pangolin SARS-CoV-2 isolates collected from Guangdong province (GD Pangolin-CoV) and Guangxi autonomous regions (GX Pangolin-CoV) of South China. Based on our comparative analysis, we support the view that the Guangdong Pangolins are the intermediate hosts that adapted the SARS-CoV-2 and represented a significant evolutionary link in the path of transmission of SARS-CoV-2 virus. We also discuss the role of intermediate hosts in the origin of Omicron.}, language = {en} } @article{SarukhanyanShityakovDandekar2020, author = {Sarukhanyan, Edita and Shityakov, Sergey and Dandekar, Thomas}, title = {Rational drug design of Axl tyrosine kinase type I inhibitors as promising candidates against cancer}, series = {Frontiers in Chemistry}, volume = {7}, journal = {Frontiers in Chemistry}, number = {920}, issn = {2296-2646}, doi = {10.3389/fchem.2019.00920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199505}, year = {2020}, abstract = {The high level of Axl tyrosine kinase expression in various cancer cell lines makes it an attractive target for the development of anti-cancer drugs. In this study, we carried out several sets of in silico screening for the ATP-competitive Axl kinase inhibitors based on different molecular docking protocols. The best drug-like candidates were identified, after parental structure modifications, by their highest affinity to the target protein. We found that our newly designed compound R5, a derivative of the R428 patented analog, is the most promising inhibitor of the Axl kinase according to the three molecular docking algorithms applied in the study. The molecular docking results are in agreement with the molecular dynamics simulations using the MM-PBSA/GBSA implicit solvation models, which confirm the high affinity of R5 toward the protein receptor. Additionally, the selectivity test against other kinases also reveals a high affinity of R5 toward ABL1 and Tyro3 kinases, emphasizing its promising potential for the treatment of malignant tumors.}, language = {en} } @article{CaliskanCrouchGiddinsetal.2022, author = {Caliskan, Aylin and Crouch, Samantha A. W. and Giddins, Sara and Dandekar, Thomas and Dangwal, Seema}, title = {Progeria and aging — Omics based comparative analysis}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {10}, issn = {2227-9059}, doi = {10.3390/biomedicines10102440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289868}, year = {2022}, abstract = {Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare "normal aging" (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression.}, language = {en} } @article{NaseemKunzDandekar2014, author = {Naseem, Muhammad and Kunz, Meik and Dandekar, Thomas}, title = {Probing the unknowns in cytokinin-mediated immune defense in Arabidopsis with systems biology approaches}, series = {Bioinformatics and Biology Insights}, volume = {8}, journal = {Bioinformatics and Biology Insights}, issn = {1177-9322}, doi = {10.4137/bbi.s13462}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120199}, pages = {35-44}, year = {2014}, abstract = {Plant hormones involving salicylic acid (SA), jasmonic acid (JA), ethylene (Et), and auxin, gibberellins, and abscisic acid (ABA) are known to regulate host immune responses. However, plant hormone cytokinin has the potential to modulate defense signaling including SA and JA. It promotes plant pathogen and herbivore resistance; underlying mechanisms are still unknown. Using systems biology approaches, we unravel hub points of immune interaction mediated by cytokinin signaling in Arabidopsis. High-confidence Arabidopsis protein-protein interactions (PPI) are coupled to changes in cytokinin-mediated gene expression. Nodes of the cellular interactome that are enriched in immune functions also reconstitute sub-networks. Topological analyses and their specific immunological relevance lead to the identification of functional hubs in cellular interactome. We discuss our identified immune hubs in light of an emerging model of cytokinin-mediated immune defense against pathogen infection in plants.}, language = {en} } @article{SalihogluSrivastavaLiangetal.2023, author = {Salihoglu, Rana and Srivastava, Mugdha and Liang, Chunguang and Schilling, Klaus and Szalay, Aladar and Bencurova, Elena and Dandekar, Thomas}, title = {PRO-Simat: Protein network simulation and design tool}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.04.023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350034}, pages = {2767-2779}, year = {2023}, abstract = {PRO-Simat is a simulation tool for analysing protein interaction networks, their dynamic change and pathway engineering. It provides GO enrichment, KEGG pathway analyses, and network visualisation from an integrated database of more than 8 million protein-protein interactions across 32 model organisms and the human proteome. We integrated dynamical network simulation using the Jimena framework, which quickly and efficiently simulates Boolean genetic regulatory networks. It enables simulation outputs with in-depth analysis of the type, strength, duration and pathway of the protein interactions on the website. Furthermore, the user can efficiently edit and analyse the effect of network modifications and engineering experiments. In case studies, applications of PRO-Simat are demonstrated: (i) understanding mutually exclusive differentiation pathways in Bacillus subtilis, (ii) making Vaccinia virus oncolytic by switching on its viral replication mainly in cancer cells and triggering cancer cell apoptosis and (iii) optogenetic control of nucleotide processing protein networks to operate DNA storage. Multilevel communication between components is critical for efficient network switching, as demonstrated by a general census on prokaryotic and eukaryotic networks and comparing design with synthetic networks using PRO-Simat. The tool is available at https://prosimat.heinzelab.de/ as a web-based query server.}, language = {en} } @article{LiangBencurovaPsotaetal.2021, author = {Liang, Chunguang and Bencurova, Elena and Psota, Eric and Neurgaonkar, Priya and Prelog, Martina and Scheller, Carsten and Dandekar, Thomas}, title = {Population-predicted MHC class II epitope presentation of SARS-CoV-2 structural proteins correlates to the case fatality rates of COVID-19 in different countries}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {5}, issn = {1422-0067}, doi = {10.3390/ijms22052630}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258936}, year = {2021}, abstract = {We observed substantial differences in predicted Major Histocompatibility Complex II (MHCII) epitope presentation of SARS-CoV-2 proteins for different populations but only minor differences in predicted MHCI epitope presentation. A comparison of this predicted epitope MHC-coverage revealed for the early phase of infection spread (till day 15 after reaching 128 observed infection cases) highly significant negative correlations with the case fatality rate. Specifically, this was observed in different populations for MHC class II presentation of the viral spike protein (p-value: 0.0733 for linear regression), the envelope protein (p-value: 0.023), and the membrane protein (p-value: 0.00053), indicating that the high case fatality rates of COVID-19 observed in some countries seem to be related with poor MHC class II presentation and hence weak adaptive immune response against these viral envelope proteins. Our results highlight the general importance of the SARS-CoV-2 structural proteins in immunological control in early infection spread looking at a global census in various countries and taking case fatality rate into account. Other factors such as health system and control measures become more important after the early spread. Our study should encourage further studies on MHCII alleles as potential risk factors in COVID-19 including assessment of local populations and specific allele distributions.}, language = {en} } @article{SchulzeTillichDandekaretal.2013, author = {Schulze, Katja and Tillich, Ulrich M. and Dandekar, Thomas and Frohme, Marcus}, title = {PlanktoVision - an automated analysis system for the identification of phytoplankton}, series = {BMC Bioinformatics}, journal = {BMC Bioinformatics}, doi = {10.1186/1471-2105-14-115}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96395}, year = {2013}, abstract = {Background Phytoplankton communities are often used as a marker for the determination of fresh water quality. The routine analysis, however, is very time consuming and expensive as it is carried out manually by trained personnel. The goal of this work is to develop a system for an automated analysis. Results A novel open source system for the automated recognition of phytoplankton by the use of microscopy and image analysis was developed. It integrates the segmentation of the organisms from the background, the calculation of a large range of features, and a neural network for the classification of imaged organisms into different groups of plankton taxa. The analysis of samples containing 10 different taxa showed an average recognition rate of 94.7\% and an average error rate of 5.5\%. The presented system has a flexible framework which easily allows expanding it to include additional taxa in the future. Conclusions The implemented automated microscopy and the new open source image analysis system - PlanktoVision - showed classification results that were comparable or better than existing systems and the exclusion of non-plankton particles could be greatly improved. The software package is published as free software and is available to anyone to help make the analysis of water quality more reproducible and cost effective.}, language = {en} } @article{WirthGlushakovaScheuermayeretal.2014, author = {Wirth, Christine C. and Glushakova, Svetlana and Scheuermayer, Matthias and Repnik, Urska and Garg, Swatl and Schaack, Dominik and Kachman, Marika M. and Weißbach, Tim and Zimmerberg, Joshua and Dandekar, Thomas and Griffiths, Gareth and Chitnis, Chetan E. and Singh, Shallja and Fischer, Rainer and Pradel, Gabriele}, title = {Perforin-like protein PPLP2 permeabilizes the red blood cell membrane during egress of Plasmodium falciparum gametocytes}, series = {Cellular Microbiology}, volume = {16}, journal = {Cellular Microbiology}, number = {5}, doi = {10.1111/cmi.12288}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120895}, pages = {709-33}, year = {2014}, abstract = {Egress of malaria parasites from the host cell requires the concerted rupture of its enveloping membranes. Hence, we investigated the role of the plasmodial perforin-like protein PPLP2 in the egress of Plasmodium falciparum from erythrocytes. PPLP2 is expressed in blood stage schizonts and mature gametocytes. The protein localizes in vesicular structures, which in activated gametocytes discharge PPLP2 in a calcium-dependent manner. PPLP2 comprises a MACPF domain and recombinant PPLP2 has haemolytic activities towards erythrocytes. PPLP2-deficient [PPLP2(-)] merozoites show normal egress dynamics during the erythrocytic replication cycle, but activated PPLP2(-) gametocytes were unable to leave erythrocytes and stayed trapped within these cells. While the parasitophorous vacuole membrane ruptured normally, the activated PPLP2(-) gametocytes were unable to permeabilize the erythrocyte membrane and to release the erythrocyte cytoplasm. In consequence, transmission of PPLP2(-) parasites to the Anopheles vector was reduced. Pore-forming equinatoxin II rescued both PPLP2(-) gametocyte exflagellation and parasite transmission. The pore sealant Tetronic 90R4, on the other hand, caused trapping of activated wild-type gametocytes within the enveloping erythrocytes, thus mimicking the PPLP2(-) loss-of-function phenotype. We propose that the haemolytic activity of PPLP2 is essential for gametocyte egress due to permeabilization of the erythrocyte membrane and depletion of the erythrocyte cytoplasm.}, language = {en} } @article{CaliskanCaliskanRasbachetal.2023, author = {Caliskan, Aylin and Caliskan, Deniz and Rasbach, Lauritz and Yu, Weimeng and Dandekar, Thomas and Breitenbach, Tim}, title = {Optimized cell type signatures revealed from single-cell data by combining principal feature analysis, mutual information, and machine learning}, series = {Computational and Structural Biotechnology Journal}, volume = {21}, journal = {Computational and Structural Biotechnology Journal}, issn = {2001-0370}, doi = {10.1016/j.csbj.2023.06.002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349989}, pages = {3293-3314}, year = {2023}, abstract = {Machine learning techniques are excellent to analyze expression data from single cells. These techniques impact all fields ranging from cell annotation and clustering to signature identification. The presented framework evaluates gene selection sets how far they optimally separate defined phenotypes or cell groups. This innovation overcomes the present limitation to objectively and correctly identify a small gene set of high information content regarding separating phenotypes for which corresponding code scripts are provided. The small but meaningful subset of the original genes (or feature space) facilitates human interpretability of the differences of the phenotypes including those found by machine learning results and may even turn correlations between genes and phenotypes into a causal explanation. For the feature selection task, the principal feature analysis is utilized which reduces redundant information while selecting genes that carry the information for separating the phenotypes. In this context, the presented framework shows explainability of unsupervised learning as it reveals cell-type specific signatures. Apart from a Seurat preprocessing tool and the PFA script, the pipeline uses mutual information to balance accuracy and size of the gene set if desired. A validation part to evaluate the gene selection for their information content regarding the separation of the phenotypes is provided as well, binary and multiclass classification of 3 or 4 groups are studied. Results from different single-cell data are presented. In each, only about ten out of more than 30000 genes are identified as carrying the relevant information. The code is provided in a GitHub repository at https://github.com/AC-PHD/Seurat_PFA_pipeline.}, language = {en} } @article{EwaldBartlDandekaretal.2017, author = {Ewald, Jan and Bartl, Martin and Dandekar, Thomas and Kaleta, Christoph}, title = {Optimality principles reveal a complex interplay of intermediate toxicity and kinetic efficiency in the regulation of prokaryotic metabolism}, series = {PLOS Computational Biology}, volume = {13}, journal = {PLOS Computational Biology}, number = {2}, doi = {10.1371/journal.pcbi.1005371}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180870}, pages = {19}, year = {2017}, abstract = {A precise and rapid adjustment of fluxes through metabolic pathways is crucial for organisms to prevail in changing environmental conditions. Based on this reasoning, many guiding principles that govern the evolution of metabolic networks and their regulation have been uncovered. To this end, methods from dynamic optimization are ideally suited since they allow to uncover optimality principles behind the regulation of metabolic networks. We used dynamic optimization to investigate the influence of toxic intermediates in connection with the efficiency of enzymes on the regulation of a linear metabolic pathway. Our results predict that transcriptional regulation favors the control of highly efficient enzymes with less toxic upstream intermediates to reduce accumulation of toxic downstream intermediates. We show that the derived optimality principles hold by the analysis of the interplay between intermediate toxicity and pathway regulation in the metabolic pathways of over 5000 sequenced prokaryotes. Moreover, using the lipopolysaccharide biosynthesis in Escherichia coli as an example, we show how knowledge about the relation of regulation, kinetic efficiency and intermediate toxicity can be used to identify drug targets, which control endogenous toxic metabolites and prevent microbial growth. Beyond prokaryotes, we discuss the potential of our findings for the development of antifungal drugs.}, language = {en} } @article{SchultzMetznerDandekaretal.1986, author = {Schultz, R{\"u}diger and Metzner, Katharina and Dandekar, Thomas and Gramsch, Christian}, title = {Opiates induce long-term increases in prodynorphin derived peptide levels in the guinea-pig myenteric plexus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29809}, year = {1986}, abstract = {No abstract available}, language = {en} } @article{KunzWolfSchulzeetal.2016, author = {Kunz, Meik and Wolf, Beat and Schulze, Harald and Atlan, David and Walles, Thorsten and Walles, Heike and Dandekar, Thomas}, title = {Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the Development of Non-Invasive Diagnostic Tools}, series = {Genes}, volume = {8}, journal = {Genes}, number = {1}, doi = {10.3390/genes8010008}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147990}, pages = {8}, year = {2016}, abstract = {Lung cancer is currently the leading cause of cancer related mortality due to late diagnosis and limited treatment intervention. Non-coding RNAs are not translated into proteins and have emerged as fundamental regulators of gene expression. Recent studies reported that microRNAs and long non-coding RNAs are involved in lung cancer development and progression. Moreover, they appear as new promising non-invasive biomarkers for early lung cancer diagnosis. Here, we highlight their potential as biomarker in lung cancer and present how bioinformatics can contribute to the development of non-invasive diagnostic tools. For this, we discuss several bioinformatics algorithms and software tools for a comprehensive understanding and functional characterization of microRNAs and long non-coding RNAs.}, language = {en} } @article{BencurovaShityakovSchaacketal.2022, author = {Bencurova, Elena and Shityakov, Sergey and Schaack, Dominik and Kaltdorf, Martin and Sarukhanyan, Edita and Hilgarth, Alexander and Rath, Christin and Montenegro, Sergio and Roth, G{\"u}nter and Lopez, Daniel and Dandekar, Thomas}, title = {Nanocellulose composites as smart devices with chassis, light-directed DNA Storage, engineered electronic properties, and chip integration}, series = {Frontiers in Bioengineering and Biotechnology}, volume = {10}, journal = {Frontiers in Bioengineering and Biotechnology}, issn = {2296-4185}, doi = {10.3389/fbioe.2022.869111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283033}, year = {2022}, abstract = {The rapid development of green and sustainable materials opens up new possibilities in the field of applied research. Such materials include nanocellulose composites that can integrate many components into composites and provide a good chassis for smart devices. In our study, we evaluate four approaches for turning a nanocellulose composite into an information storage or processing device: 1) nanocellulose can be a suitable carrier material and protect information stored in DNA. 2) Nucleotide-processing enzymes (polymerase and exonuclease) can be controlled by light after fusing them with light-gating domains; nucleotide substrate specificity can be changed by mutation or pH change (read-in and read-out of the information). 3) Semiconductors and electronic capabilities can be achieved: we show that nanocellulose is rendered electronic by iodine treatment replacing silicon including microstructures. Nanocellulose semiconductor properties are measured, and the resulting potential including single-electron transistors (SET) and their properties are modeled. Electric current can also be transported by DNA through G-quadruplex DNA molecules; these as well as classical silicon semiconductors can easily be integrated into the nanocellulose composite. 4) To elaborate upon miniaturization and integration for a smart nanocellulose chip device, we demonstrate pH-sensitive dyes in nanocellulose, nanopore creation, and kinase micropatterning on bacterial membranes as well as digital PCR micro-wells. Future application potential includes nano-3D printing and fast molecular processors (e.g., SETs) integrated with DNA storage and conventional electronics. This would also lead to environment-friendly nanocellulose chips for information processing as well as smart nanocellulose composites for biomedical applications and nano-factories.}, language = {en} } @article{DandekarTollervey1992, author = {Dandekar, Thomas and Tollervey, David}, title = {Mutational analysis of Schizosaccharomyces pombe U4 snRNA by plasmid exchange}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29969}, year = {1992}, abstract = {No abstract available}, language = {en} } @article{AydinliLiangDandekar2022, author = {Aydinli, Muharrem and Liang, Chunguang and Dandekar, Thomas}, title = {Motif and conserved module analysis in DNA (promoters, enhancers) and RNA (lncRNA, mRNA) using AlModules}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-022-21732-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-301268}, year = {2022}, abstract = {Nucleic acid motifs consist of conserved and variable nucleotide regions. For functional action, several motifs are combined to modules. The tool AIModules allows identification of such motifs including combinations of them and conservation in several nucleic acid stretches. AIModules recognizes conserved motifs and combinations of motifs (modules) allowing a number of interesting biological applications such as analysis of promoter and transcription factor binding sites (TFBS), identification of conserved modules shared between several gene families, e.g. promoter regions, but also analysis of shared and conserved other DNA motifs such as enhancers and silencers, in mRNA (motifs or regulatory elements e.g. for polyadenylation) and lncRNAs. The tool AIModules presented here is an integrated solution for motif analysis, offered as a Web service as well as downloadable software. Several nucleotide sequences are queried for TFBSs using predefined matrices from the JASPAR DB or by using one's own matrices for diverse types of DNA or RNA motif discovery. Furthermore, AIModules can find TFBSs common to two or more sequences. Demanding high or low conservation, AIModules outperforms other solutions in speed and finds more modules (specific combinations of TFBS) than alternative available software. The application also searches RNA motifs such as polyadenylation site or RNA-protein binding motifs as well as DNA motifs such as enhancers as well as user-specified motif combinations (https://bioinfo-wuerz.de/aimodules/; alternative entry pages: https://aimodules.heinzelab.de or https://www.biozentrum.uni-wuerzburg.de/bioinfo/computing/aimodules). The application is free and open source whether used online, on-site, or locally.}, language = {en} } @article{RatzkaFoersterLiangetal.2012, author = {Ratzka, Carolin and F{\"o}rster, Frank and Liang, Chunguang and Kupper, Maria and Dandekar, Thomas and Feldhaar, Heike and Gross, Roy}, title = {Molecular characterization of antimicrobial peptide genes of the carpenter ant Camponotus floridanus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75985}, year = {2012}, abstract = {The production of antimicrobial peptides (AMPs) is a major defense mechanism against pathogen infestation and of particular importance for insects relying exclusively on an innate immune system. Here, we report on the characterization of three AMPs from the carpenter ant Camponotus floridanus. Due to sequence similarities and amino acid composition these peptides can be classified into the cysteine-rich (e.g. defensin) and glycine-rich (e.g. hymenoptaecin) AMP groups, respectively. The gene and cDNA sequences of these AMPs were established and their expression was shown to be induced by microbial challenge. We characterized two different defensin genes. The defensin-2 gene has a single intron, whereas the defensin-1 gene has two introns. The deduced amino acid sequence of the C. floridanus defensins is very similar to other known ant defensins with the exception of a short C-terminal extension of defensin-1. The hymenoptaecin gene has a single intron and a very peculiar domain structure. The corresponding precursor protein consists of a signal- and a pro-sequence followed by a hymenoptaecin-like domain and six directly repeated hymenoptaecin domains. Each of the hymenoptaecin domains is flanked by an EAEP-spacer sequence and a RR-site known to be a proteolytic processing site. Thus, proteolytic processing of the multipeptide precursor may generate several mature AMPs leading to an amplification of the immune response. Bioinformatical analyses revealed the presence of hymenoptaecin genes with similar multipeptide precursor structure in genomes of other ant species suggesting an evolutionary conserved important role of this gene in ant immunity.}, subject = {Biologie}, language = {en} } @article{OthmanFathyBekhitetal.2021, author = {Othman, Eman M. and Fathy, Moustafa and Bekhit, Amany Abdlrehim and Abdel-Razik, Abdel-Razik H. and Jamal, Arshad and Nazzal, Yousef and Shams, Shabana and Dandekar, Thomas and Naseem, Muhammad}, title = {Modulatory and toxicological perspectives on the effects of the small molecule kinetin}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {3}, issn = {1420-3049}, doi = {10.3390/molecules26030670}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223064}, year = {2021}, abstract = {Plant hormones are small regulatory molecules that exert pharmacological actions in mammalian cells such as anti-oxidative and pro-metabolic effects. Kinetin belongs to the group of plant hormones cytokinin and has been associated with modulatory functions in mammalian cells. The mammalian adenosine receptor (A2a-R) is known to modulate multiple physiological responses in animal cells. Here, we describe that kinetin binds to the adenosine receptor (A2a-R) through the Asn253 residue in an adenosine dependent manner. To harness the beneficial effects of kinetin for future human use, we assess its acute toxicity by analyzing different biochemical and histological markers in rats. Kinetin at a dose below 1 mg/kg had no adverse effects on the serum level of glucose or on the activity of serum alanine transaminase (ALT) or aspartate aminotransferase (AST) enzymes in the kinetin treated rats. Whereas, creatinine levels increased after a kinetin treatment at a dose of 0.5 mg/kg. Furthermore, 5 mg/kg treated kinetin rats showed normal renal corpuscles, but a mild degeneration was observed in the renal glomeruli and renal tubules, as well as few degenerated hepatocytes were also observed in the liver. Kinetin doses below 5 mg/kg did not show any localized toxicity in the liver and kidney tissues. In addition to unraveling the binding interaction between kinetin and A2a-R, our findings suggest safe dose limits for the future use of kinetin as a therapeutic and modulatory agent against various pathophysiological conditions.}, language = {en} } @article{KuehnemundtLeifeldSchergetal.2021, author = {K{\"u}hnemundt, Johanna and Leifeld, Heidi and Scherg, Florian and Schmitt, Matthias and Nelke, Lena C. and Schmitt, Tina and Bauer, Florentin and G{\"o}ttlich, Claudia and Fuchs, Maximilian and Kunz, Meik and Peindl, Matthias and Br{\"a}hler, Caroline and Kronenthaler, Corinna and Wischhusen, J{\"o}rg and Prelog, Martina and Walles, Heike and Dandekar, Thomas and Dandekar, Gudrun and Nietzer, Sarah L.}, title = {Modular micro-physiological human tumor/tissue models based on decellularized tissue for improved preclinical testing}, series = {ALTEX}, volume = {38}, journal = {ALTEX}, doi = {10.14573/altex.2008141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231465}, pages = {289-306}, year = {2021}, abstract = {High attrition-rates entailed by drug testing in 2D cell culture and animal models stress the need for improved modeling of human tumor tissues. In previous studies our 3D models on a decellularized tissue matrix have shown better predictivity and higher chemoresistance. A single porcine intestine yields material for 150 3D models of breast, lung, colorectal cancer (CRC) or leukemia. The uniquely preserved structure of the basement membrane enables physiological anchorage of endothelial cells and epithelial-derived carcinoma cells. The matrix provides different niches for cell growth: on top as monolayer, in crypts as aggregates and within deeper layers. Dynamic culture in bioreactors enhances cell growth. Comparing gene expression between 2D and 3D cultures, we observed changes related to proliferation, apoptosis and stemness. For drug target predictions, we utilize tumor-specific sequencing data in our in silico model finding an additive effect of metformin and gefitinib treatment for lung cancer in silico, validated in vitro. To analyze mode-of-action, immune therapies such as trispecific T-cell engagers in leukemia, as well as toxicity on non-cancer cells, the model can be modularly enriched with human endothelial cells (hECs), immune cells and fibroblasts. Upon addition of hECs, transmigration of immune cells through the endothelial barrier can be investigated. In an allogenic CRC model we observe a lower basic apoptosis rate after applying PBMCs in 3D compared to 2D, which offers new options to mirror antigen-specific immunotherapies in vitro. In conclusion, we present modular human 3D tumor models with tissue-like features for preclinical testing to reduce animal experiments.}, language = {en} } @article{AudretschGrataniWolzetal.2021, author = {Audretsch, Christof and Gratani, Fabio and Wolz, Christiane and Dandekar, Thomas}, title = {Modeling of stringent-response reflects nutrient stress induced growth impairment and essential amino acids in different Staphylococcus aureus mutants}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, number = {1}, doi = {10.1038/s41598-021-88646-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260313}, year = {2021}, abstract = {Stapylococcus aureus colonises the nose of healthy individuals but can also cause a wide range of infections. Amino acid (AA) synthesis and their availability is crucial to adapt to conditions encountered in vivo. Most S. aureus genomes comprise all genes required for AA biosynthesis. Nevertheless, different strains require specific sets of AAs for growth. In this study we show that regulation inactivates pathways under certain conditions which result in these observed auxotrophies. We analyzed in vitro and modeled in silico in a Boolean semiquantitative model (195 nodes, 320 edges) the regulatory impact of stringent response (SR) on AA requirement in S. aureus HG001 (wild-type) and in mutant strains lacking the metabolic regulators RSH, CodY and CcpA, respectively. Growth in medium lacking single AAs was analyzed. Results correlated qualitatively to the in silico predictions of the final model in 92\% and quantitatively in 81\%. Remaining gaps in our knowledge are evaluated and discussed. This in silico model is made fully available and explains how integration of different inputs is achieved in SR and AA metabolism of S. aureus. The in vitro data and in silico modeling stress the role of SR and central regulators such as CodY for AA metabolisms in S. aureus.}, language = {en} } @article{ShityakovBencurovaFoersteretal.2020, author = {Shityakov, Sergey and Bencurova, Elena and F{\"o}rster, Carola and Dandekar, Thomas}, title = {Modeling of shotgun sequencing of DNA plasmids using experimental and theoretical approaches}, series = {BMC Bioinformatics}, volume = {2020}, journal = {BMC Bioinformatics}, doi = {10.1186/s12859-020-3461-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229169}, year = {2020}, abstract = {Background Processing and analysis of DNA sequences obtained from next-generation sequencing (NGS) face some difficulties in terms of the correct prediction of DNA sequencing outcomes without the implementation of bioinformatics approaches. However, algorithms based on NGS perform inefficiently due to the generation of long DNA fragments, the difficulty of assembling them and the complexity of the used genomes. On the other hand, the Sanger DNA sequencing method is still considered to be the most reliable; it is a reliable choice for virtual modeling to build all possible consensus sequences from smaller DNA fragments. Results In silico and in vitro experiments were conducted: (1) to implement and test our novel sequencing algorithm, using the standard cloning vectors of different length and (2) to validate experimentally virtual shotgun sequencing using the PCR technique with the number of cycles from 1 to 9 for each reaction. Conclusions We applied a novel algorithm based on Sanger methodology to correctly predict and emphasize the performance of DNA sequencing techniques as well as in de novo DNA sequencing and its further application in synthetic biology. We demonstrate the statistical significance of our results.}, language = {en} } @article{CecilRikanovicOhlsenetal.2011, author = {Cecil, Alexander and Rikanovic, Carina and Ohlsen, Knut and Liang, Chunguang and Bernhardt, Jorg and Oelschlaeger, Tobias A. and Gulder, Tanja and Bringmann, Gerd and Holzgrabe, Ulrike and Unger, Matthias and Dandekar, Thomas}, title = {Modeling antibiotic and cytotoxic effects of the dimeric isoquinoline IQ-143 on metabolism and its regulation in Staphylococcus aureus, Staphylococcus epidermidis and human cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68802}, year = {2011}, abstract = {Background: Xenobiotics represent an environmental stress and as such are a source for antibiotics, including the isoquinoline (IQ) compound IQ-143. Here, we demonstrate the utility of complementary analysis of both host and pathogen datasets in assessing bacterial adaptation to IQ-143, a synthetic analog of the novel type N,C-coupled naphthyl-isoquinoline alkaloid ancisheynine. Results: Metabolite measurements, gene expression data and functional assays were combined with metabolic modeling to assess the effects of IQ-143 on Staphylococcus aureus, Staphylococcus epidermidis and human cell lines, as a potential paradigm for novel antibiotics. Genome annotation and PCR validation identified novel enzymes in the primary metabolism of staphylococci. Gene expression response analysis and metabolic modeling demonstrated the adaptation of enzymes to IQ-143, including those not affected by significant gene expression changes. At lower concentrations, IQ-143 was bacteriostatic, and at higher concentrations bactericidal, while the analysis suggested that the mode of action was a direct interference in nucleotide and energy metabolism. Experiments in human cell lines supported the conclusions from pathway modeling and found that IQ-143 had low cytotoxicity. Conclusions: The data suggest that IQ-143 is a promising lead compound for antibiotic therapy against staphylococci. The combination of gene expression and metabolite analyses with in silico modeling of metabolite pathways allowed us to study metabolic adaptations in detail and can be used for the evaluation of metabolic effects of other xenobiotics.}, subject = {Staphylococcus aureus}, language = {en} } @article{AhmedZeeshanDandekar2016, author = {Ahmed, Zeeshan and Zeeshan, Saman and Dandekar, Thomas}, title = {Mining biomedical images towards valuable information retrieval in biomedical and life sciences}, series = {Database - The Journal of Biological Databases and Curation}, volume = {2016}, journal = {Database - The Journal of Biological Databases and Curation}, doi = {10.1093/database/baw118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162697}, pages = {baw118}, year = {2016}, abstract = {Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries.}, language = {en} } @article{HanRenMamtiminetal.2023, author = {Han, Chao and Ren, Pengxuan and Mamtimin, Medina and Kruk, Linus and Sarukhanyan, Edita and Li, Chenyu and Anders, Hans-Joachim and Dandekar, Thomas and Krueger, Irena and Elvers, Margitta and Goebel, Silvia and Adler, Kristin and M{\"u}nch, G{\"o}tz and Gudermann, Thomas and Braun, Attila and Mammadova-Bach, Elmina}, title = {Minimal collagen-binding epitope of glycoprotein VI in human and mouse platelets}, series = {Biomedicines}, volume = {11}, journal = {Biomedicines}, number = {2}, issn = {2227-9059}, doi = {10.3390/biomedicines11020423}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304148}, year = {2023}, abstract = {Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin, regulating important platelet functions such as platelet adhesion and thrombus growth. Although the blockade of GPVI function is widely recognized as a potent anti-thrombotic approach, there are limited studies focused on site-specific targeting of GPVI. Using computational modeling and bioinformatics, we analyzed collagen- and CRP-binding surfaces of GPVI monomers and dimers, and compared the interacting surfaces with other mammalian GPVI isoforms. We could predict a minimal collagen-binding epitope of GPVI dimer and designed an EA-20 antibody that recognizes a linear epitope of this surface. Using platelets and whole blood samples donated from wild-type and humanized GPVI transgenic mice and also humans, our experimental results show that the EA-20 antibody inhibits platelet adhesion and aggregation in response to collagen and CRP, but not to fibrin. The EA-20 antibody also prevents thrombus formation in whole blood, on the collagen-coated surface, in arterial flow conditions. We also show that EA-20 does not influence GPVI clustering or receptor shedding. Therefore, we propose that blockade of this minimal collagen-binding epitope of GPVI with the EA-20 antibody could represent a new anti-thrombotic approach by inhibiting specific interactions between GPVI and the collagen matrix.}, language = {en} } @article{KunzGoettlichWallesetal.2017, author = {Kunz, Meik and G{\"o}ttlich, Claudia and Walles, Thorsten and Nietzer, Sarah and Dandekar, Gudrun and Dandekar, Thomas}, title = {MicroRNA-21 versus microRNA-34: Lung cancer promoting and inhibitory microRNAs analysed in silico and in vitro and their clinical impact}, series = {Tumor Biology}, volume = {39}, journal = {Tumor Biology}, number = {7}, doi = {10.1177/1010428317706430}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158399}, year = {2017}, abstract = {MicroRNAs are well-known strong RNA regulators modulating whole functional units in complex signaling networks. Regarding clinical application, they have potential as biomarkers for prognosis, diagnosis, and therapy. In this review, we focus on two microRNAs centrally involved in lung cancer progression. MicroRNA-21 promotes and microRNA-34 inhibits cancer progression. We elucidate here involved pathways and imbed these antagonistic microRNAs in a network of interactions, stressing their cancer microRNA biology, followed by experimental and bioinformatics analysis of such microRNAs and their targets. This background is then illuminated from a clinical perspective on microRNA-21 and microRNA-34 as general examples for the complex microRNA biology in lung cancer and its diagnostic value. Moreover, we discuss the immense potential that microRNAs such as microRNA-21 and microRNA-34 imply by their broad regulatory effects. These should be explored for novel therapeutic strategies in the clinic.}, language = {en} }