@phdthesis{Maric2012, author = {Maric, Hans-Michael}, title = {Molecular Basis of the Multivalent Glycine and γ-Aminobutyric Acid Type A Receptor Anchoring}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85712}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {γ-Aminobutters{\"a}ure-Rezeptoren vom Typ A (GABAARs) und Glyzin-Rezeptoren (GlyRs) sind die wichtigsten Vermittler der schnellen synaptischen Inhibition im zentralen Nervensystem. Von wesentlicher Bedeutung f{\"u}r ihre ordnungsgem{\"a}ße Funktion in der inhibitorischen Signal{\"u}bertragung ist ihre pr{\"a}zise Lokalisation und Konzentration innerhalb der neuronalen Oberfl{\"a}chenmembran. Diese Eigenschaften werden durch Ger{\"u}stproteine vermittelt, welche direkt an die großen intrazellul{\"a}ren Schleifen der Rezeptoren, sowie an Bausteine des neuronalen Zytoskeletts binden. In meiner Dissertation habe ich die molekularen Details mehrerer zugrunde liegenden Protein-Protein Wechselwirkungen untersucht. Im Speziellen habe ich die Interaktion ausgew{\"a}hlter GABAAR und GlyR Untereinheiten mit den Ger{\"u}stproteinen Gephyrin, Radixin und Collybistin analysiert. Ich habe kurze lineare Aminos{\"a}uren-Motive innerhalb der großen intrazellul{\"a}ren Schleifen der Rezeptoren identifiziert, welche die direkten und Untereinheit-spezifischen Interaktionen vermitteln. Die Quantifizierung der jeweiligen Bindungsst{\"a}rke ergab, dass Gephyrins E-Dom{\"a}ne vor allem an die GABAAR α1 (Kd = 17 M) und α3 (Kd = 5 M) -Untereinheiten bindet, wohingegen die SH3-Dom{\"a}ne von Collybistin haupts{\"a}chlich mit der GABAAR α2-Untereinheit interagiert (Kd = 1 M). Demgegen{\"u}ber bindet die FERM-Dom{\"a}ne von Radixin fest an die α5-Untereinheit des GABAAR (Kd = 8 µM). Weiterhin zeigt meine Arbeit, dass diese einfache Beziehung durch (i) fehlende oder (ii) {\"u}berlappende Bindungsspezifit{\"a}ten zwischen den Ger{\"u}stproteinen und den Rezeptor-Untereinheiten komplex reguliert wird. Ferner beschreibe ich hier, wie im Folgenden ausgef{\"u}hrt, die M{\"o}glichkeit einer (iii) negativen Modulation mittels posttranslationaler Modifikation, sowie einer Verst{\"a}rkung der Bindung durch (iv) Avidit{\"a}ts-Effekte. (i) Als erstes habe ich mit Hilfe biochemischer Methoden die Radixin-GABAAR α5 Interaktion im Detail untersucht. Meine Strukturanalyse und Kompetitionsstudien legen den Schluss nahe, dass Radixin die betreffende Rezeptor-Untereinheit mittels einer universellen Bindungstasche in der F3 Subdom{\"a}ne innerhalb seiner FERM Dom{\"a}ne bindet. Diese Bindungsstelle wird durch zwei markante Strukturelemente gebildet: Einer α-Helix, die eine große hydrophobe Tasche bildet, welche eine Vielzahl unterschiedlicher hydrophober Reste in verschiedenen Konformationen akzeptiert, sowie ein β-Strang, der Peptidr{\"u}ckgrat-Interaktionen eingehen kann. Es {\"u}berrascht nicht, dass eine Vielzahl an Studien die Beteiligung dieser Bindungsseite mit unterschiedlichen Liganden beschrieben hat. Diese Promiskuit{\"a}t unterstreicht die Bedeutung des Aktivierungsmechanismus der zuvor f{\"u}r die Radixin FERM GABAAR α5-Untereinheit beschrieben wurde und impliziert weitere Regulationsmechanismen, die eine koordinierte Interaktion in vivo erm{\"o}glichen. (ii) Weiterhin habe ich mich ausf{\"u}hrlich der Analyse der Gephyrin-vermittelten GABAAR Clusterbildung gewidmet. Meine r{\"o}ntgenkristallographischen Studien und Bindungsstudien zeigen, dass Gephyrin mit den GABAAR α1, α2 und α3 Untereinheiten {\"u}ber eine universelle Bindungsstelle interagiert, welche auch die Wechselwirkungen mit der β-Untereinheit des GlyR vermittelt. Mittels Struktur-basierter Mutagenesestudien konnte ich die Schl{\"u}sselreste innerhalb von Gephyrin und der Rezeptor-Untereinheiten identifizieren, die einen entscheidenden Beitrag zur Gesamt-Bindungsst{\"a}rke liefern. Insbesondere zwei konservierte aromatische Reste in der N-terminalen H{\"a}lfte der Rezeptorbindungsregion gehen entscheidende hydrophobe Wechselwirkungen mit Gephyrin ein. Dementsprechend konnte J. Mukherjee, ein Mitarbeiter in der Gruppe unseres Kooperationspartners Steven J. Moss, zeigen, dass der Austausch dieser Reste innerhalb der α2-Untereinheit des GABAAR ausreicht, um einen deutlichen R{\"u}ckgang der Rezeptor Cluster-Anzahl und ihrer Gr{\"o}ße in prim{\"a}ren hippokampalen Neuronen zu verursachen. Die Ausweitung meiner Rezeptor-Interaktions-Studien auf Collybistin (CB) ergab, dass dieses Protein im Vergleich zu Gephyrin eine umgekehrte, aber dennoch {\"u}berlappende Rezeptor-Untereinheiten-Pr{\"a}ferenz aufweist. Die GABAAR α3-Untereinheit bindet ausschließlich an Gephyrin (Kd = 5 µM), w{\"a}hrend die GABAAR α1-Untereinheit zwar vor allem Gephyrin bindet (Kd = 17 µM), zus{\"a}tzlich jedoch eine schwache Affinit{\"a}t (Kd ≈ 400 µM) f{\"u}r die SH3-Dom{\"a}ne von CB aufweist. Im Gegensatz dazu bindet die GABAAR α2-Untereinheit hochaffin an die SH3-Dom{\"a}ne von CB (Kd = 1 µM) und zeigt zus{\"a}tzlich eine schwache Gephyrin Affinit{\"a}t (Kd ≈ 500 µM). Interessanterweise konnte ich Synergieeffekte zwischen der GABAAR α2-Untereinheit, Gephyrins E-Dom{\"a}ne und CBs SH3-Dom{\"a}ne ausschließen und statt dessen zeigen, dass diese Rezeptor-Untereinheit exklusiv entweder Gephyrin oder CB bindet. Diese Ergebnisse lassen vermuten, dass die Rolle von CB in der Rezeptor-Anh{\"a}ufung allein durch die konkurrierenden Bindungs-Ereignisse seiner konstituierenden Dom{\"a}nen bestimmt wird. Die intramolekulare Assoziation zwischen der PH und der DH-Dom{\"a}ne mit der SH3-Dom{\"a}ne von CB konkurriert mit unterschiedlichen intermolekularen Wechselwirkungen von CB. Und zwar mit der GABAAR α2-Untereinheit-Bindung an die SH3-Dom{\"a}ne, mit der PIP2-Bindung an die PH-Dom{\"a}ne, sowie mit der Gephyrin-Bindung, welche vermutlich von der PH und DH-Dom{\"a}ne von CB vermittelt wird. (iii) Interessanterweise best{\"a}tigen fr{\"u}here Studien, dass die Rezeptor-Motive, die ich hier identifiziert habe und welche direkt mit den Ger{\"u}st-Proteinen wechselwirken, in vivo posttranslational modifiziert vorliegen. Insbesondere wurde gezeigt, dass die Gephyrin-Bindemotive der GABAAR α1-Untereinheit und GlyR β-Untereinheiten Ziele des ERK/MAPK und PKC-Phosphorylierungs-Weges sind, w{\"a}hrend das Radixin-Bindungs-Motiv innerhalb der GABAAR α5-Untereinheit ubiquitiniert vorliegt. In dieser Dissertation habe ich im Besonderen die ERK-Phosphorylierung von Thr348 in der GABAAR α1-Untereinheit untersucht. Tats{\"a}chlich konnten meine Bindungs-Assays eine starke Reduktion der direkten Gephyrin Bindungsst{\"a}rke beim Einbringen eines phosphomimetischen Restes best{\"a}tigen. Dar{\"u}ber hinaus konnte J. Mukherjee eine signifikante Reduktion der Cluster-Anzahl und Gr{\"o}ße beim Einf{\"u}hren der gleichen Mutation in die α1-Untereinheit beinhaltenden GABAARs in hippokampalen Neuronen beobachten. Der ERK/MAPK-Regulation-Weg ist daher ein aussichtsreicher Kandidat f{\"u}r die Regulation der GABAergen-Signal{\"u}bertragung. (iv) In vivo bildet Gephyrin vermutlich durch Selbstorganisation seiner G (GephG) und E-Dom{\"a}nen (GephE) ein multivalentes Ger{\"u}st. Angesichts der multimeren Natur Gephyrins und der pentameren Rezeptorarchitektur habe ich die M{\"o}glichkeit von Avidit{\"a}ts-Effekten im Prozess der synaptischen Neurotransmitter-Rezeptor-Anh{\"a}ufung untersucht. Die Kristallstrukturen von GephE im Komplex mit ausgew{\"a}hlten Peptiden zeigen zwei Rezeptor-Bindungsstellen in r{\"a}umlicher N{\"a}he (15 {\AA}). Auf der Basis dieser Information habe ich bivalente Peptide entworfen, welche beide Rezeptor-Bindungsstellen in Gephyrin simultan besetzen k{\"o}nnen und, wie erwartet, konnte ich mit Hilfe verschiedener biophysikalischen Methoden eine un{\"u}bertroffen hohe, durch Avidit{\"a}t potenzierte, Gephyrin-Affinit{\"a}t nachweisen. Mir gelang es diesen Avidit{\"a}ts-Effekt f{\"u}r einen schwachen Gephyrin Liganden, ein GABAAR-abgeleitetes Peptid, welcher nicht mit herk{\"o}mmlichen monomeren Liganden untersucht werden konnte, nutzbar zu machen. Dar{\"u}ber hinaus konnte ich zeigen, dass diese Verbindung gezielt die Rezeptor-Bindungsstelle in GephE besetzt und auf diese Weise hemmend auf Gephyrins Rezeptorbindungsaktivit{\"a}t wirkt. Eine weitere Entwicklung dieser Verbindung k{\"o}nnte die M{\"o}glichkeit er{\"o}ffnen, spezifisch die Wirkung der Entkopplung der Gephyrin Rezeptor-Interaktion in der Zellkultur-Experimenten zu analysieren ohne dabei die Anzahl oder die Funktion der Proteine zu beeintr{\"a}chtigen, was einen Nebeneffekt von konventionellen Methoden wie Gen „knock-out", RNA-Interferenz oder den Einsatz von Antik{\"o}rpern darstellt.}, subject = {Gephyrin}, language = {en} }