@phdthesis{Shamburger2021, author = {Shamburger, William}, title = {Total Synthesis of Mono- and Dimeric Naphthylisoquinoline Alkaloids and Related Analogs}, doi = {10.25972/OPUS-25061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250612}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Our research group focusses on the isolation, structural elucidation, and synthesis of bioactive natural products, among others, the naphthylisoquinoline alkaloids from tropical lianas. This intriguing class of compounds comprises representatives with activities against, e.g. P. falciparum, the cause of Malaria tropica, against the neglected disease leishmaniasis, and, as discovered more recently, against different types of cancer cells. Based on the high potency of theses extraordinary secondary metabolites, this thesis was devoted to the total synthesis of bioactive natural products and closely related analogs.}, subject = {Naphthylisochinolinalkaloide}, language = {en} } @phdthesis{Roos2021, author = {Roos, Markus}, title = {Synthesis, Photophysics and Photocatalysis of [FeFe] Complex Containing Dyads and Bimolecular Systems}, doi = {10.25972/OPUS-23453}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234537}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In the course of this work, a total of three photocatalytically active dyads for proton reduction could be synthesized together with the associated individual components. Two of them, D1 and D2, comprised a [Ru(bpy)3]2+ photosensitizer and D3 an [Ir(ppy)2bpy]+ photosensitizer. A Ppyr3-substituted propyldithiolate [FeFe] complex was used as catalyst in all systems. The absorption spectroscopic and electrochemical investigations showed that an inner-dyadic electronic coupling is effectively prevented in the dyads due to conjugation blockers within the bridging units used. The photocatalytic investigations exhibited that all dyad containing two-component systems (2CS) showed a significantly worse performance than the corresponding bimolecular three-component systems (3CS). Transient absorption spectroscopy showed that the 2CS behave very similarly to the associated multicomponent systems during photocatalysis. The electron that was intended for the intramolecular transfer from the photosensitizer unit to the catalyst unit within the dyads remains at the photosensitizer for a relatively long time, analogous to the 3CS and despite the covalently bound catalyst. It is therefore assumed that this intramolecular electron transfer is likely to be hindered as a result of the weak electronic coupling caused by the bridge units used. Instead, the system bypasses this through an intermolecular transfer to other dyad molecules in the immediate vicinity. In addition, with the help of emission quenching experiments and electrochemical investigations, it could be clearly concluded that all investigated systems proceed via the reductive quenching mechanism during photocatalysis.}, subject = {Fotokatalyse}, language = {en} } @phdthesis{Wehner2021, author = {Wehner, Marius}, title = {Supramolecular Polymorphism in Homo- and Heterochiral Supramolecular Polymerizations}, doi = {10.25972/OPUS-21151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211519}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The aim of the first part of this thesis was to investigate (R,R)-PBI as a model system for polymorphism at its origin by a supramolecular approach. The pathway complexity of (R,R)-PBI was fine-tuned by experimental parameters such as solvent, temperature and concentration to make several supramolecular polymorphs accessible. Mechanistic and quantum chemical studies on the kinetics and thermodynamics of the supramolecular polymerization of (R,R)-PBI were conducted to shed light on the initial stages of polymorphism. The second part of this work deals with mechanistic investigations on the supramolecular polymerization of the racemic mixture of (R,R)- and (S,S)-PBI with regard to homochiral and heterochiral aggregation leading to conglomerates and a racemic supramolecular polymer, respectively.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Sapotta2021, author = {Sapotta, Meike}, title = {Perylene Bisimide Cyclophanes: Recognition of Alkaloids, Aggregation Behavior in Aqueous Environment and Guest-Mediated Chirality Transfer}, doi = {10.25972/OPUS-20002}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200028}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Inspired by the fact that sufficient solubility in aqueous media can be achieved by functional substitution of perylene bisimides (PBIs) with polar groups, one of the essential aims of this thesis was the design and successful synthesis of the new water-soluble PBI cyclophanes [2PBI]-1m and [2PBI]-1p, which are appended with branched, hydrophilic oligoethylene glycol (OEG) chains. Subsequently, the focus was set on the elucidation of properties of PBI cyclophane hosts which are also of relevance for recognition processes in biological systems. The performance of the new amphiphilic PBI cyclophane [2PBI]-1p as synthetic receptors for various natural aromatic alkaloids in aqueous media was thoroughly investigated. Alkaloids represent a prominent class of ubiquitous nitrogen containing natural compounds with a great structural variety and diverse biological activity. As of yet, no chromophore host acting as a molecular probe for a range of alkaloids such as harmine or harmaline is known. In addition, the self-association behavior of cyclophane host [2PBI]-1m and its reference monomer in water was studied in order to gain insights into the thermodynamic driving forces affecting the self-assembly process of these two PBI systems in aqueous environment. Moreover, the chirality transfer upon guest binding previously observed for a PBI cyclophane was investigated further. The assignment of the underlying mechanism of guest recognition to either the induced fit or conformational selection model was of particular interest.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Siewert2021, author = {Siewert, Aaron}, title = {Nucleotide analogs as rigid spin labels for DNA and RNA}, doi = {10.25972/OPUS-24765}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247657}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Nucleic acids are one of the important classes of biomolecules together with carbohydrates, proteins and lipids. Both deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are most well known for their respective roles in the storage and expression of genetic information. Over the course of the last decades, nucleic acids with a variety of other functions have been discovered in biological organisms or created artificially. Examples of these functional nucleic acids are riboswitches, aptamers and ribozymes. In order to gain information regarding their function, several analytical methods can be used. Electron paramagnetic resonance (EPR) spectroscopy is one of several techniques which can be used to study nucleic acid structure and dynamics. However, EPR spectroscopy requires unpaired electrons and because nucleic acids themselves are not paramagnetic, the incorporation of spin labels which carry a radical is necessary. Here, three new spin labels for the analysis of nucleic acids by EPR spectroscopy are presented. All of them share two important design features. First, the paramagnetic center is located at a nitroxide, flanked by ethyl groups to prevent nitroxide degradation, for example during solid phase synthesis. Furthermore, they were designed with rigidity as an important quality, in order to be useful for applications like pulsed electron double resonance (PELDOR) spectroscopy, where independent motion of the spin labels relative to the macromolecule has a noticeable negative effect on the precision of the measurements. Benzi-spin is a spin label which differs from most previous examples of rigid spin labels in that rather than being based on a canonical nucleoside, with a specific base pairing partner, it is supposed to be a universal nucleoside which is sufficiently rigid for EPR measurements when placed opposite to a number of different nucleosides. Benzi-spin was successfully incorporated into a 20 nt oligonucleotide and its base pairing behavior with seven different nucleosides was examined by UV/VIS thermal denaturation and continuous wave (CW) EPR experiments. The results show only minor differences between the different nucleosides, thus confirming the ability of benzi-spin to act as a universally applicable spin label. Lumi-spin is derived from lumichrome. It features a rigid scaffold, as well as a free 2'-hydroxy group, which should make it well suited for PELDOR experiments once it is incorporated into RNA oligonucleotides. E{\c{C}}r is based on the {\c{C}} family of spin labels, which contains the most well known rigid spin labels for nucleic acids to this day. It is essentially a version of E{\c{C}}m with a free 2'-hydroxy group. It was converted to triphosphate E{\c{C}}rTP and used for primer extension experiments to test the viability of enzymatic incorporation of rigid spin labels into oligonucleotides as an alternative to solid-phase synthesis. Incorporation into DNA by Therminator III DNA polymerase in both single-nucleotide and full-length primer extensions was achieved. All three of these spin labels represent further additions to the expanding toolbox of EPR spectroscopy on nucleic acids and might prove valuable for future research.}, subject = {Nucleins{\"a}uren}, language = {en} } @phdthesis{KimbadiLombe2021, author = {Kimbadi Lombe, Blaise}, title = {Novel-Type Dimeric Naphthylisoquinoline Alkaloids from Congolese Ancistrocladus Lianas: Isolation, Structural Elucidation, and Antiprotozoal and Anti-Tumoral Activities}, doi = {10.25972/OPUS-19178}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191789}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Herein described is the discovery of three novel types of dimeric naphthylisoquinoline alkaloids, named mbandakamines, cyclombandakamines, and spirombandakamines. They were found in the leaves of a botanically as yet unidentified, potentially new Ancistrocladus species, collected in the rainforest of the Democratic Republic of the Congo (DRC). Mbandakamines showed an exceptional 6′,1′′-coupling, in the peri-position neighboring one of the outer axes, leading to an extremely high steric hindrance at the central axis, and to U-turn-like molecular shape, which - different from all other dimeric NIQs, whose basic structures are all quite linear - brings three of the four bicyclic ring systems in close proximity to each other. This created an unprecedented follow-up chemistry, involving ring closure reactions, leading to two further, structurally even more intriguing subclasses, the cyclo- and the spirombandakamines, displaying eight stereogenic elements (the highest total number ever found in naphthylisoquinoline alkaloids). The metabolites exhibited pronounced antiplasmodial and antitrypanosomal activities. Likewise reported in this doctoral thesis are the isolation and structural elucidation of naphthylisoquinoline alkaloids from two further potentially new Ancistrocladus species from DRC. Some of these metabolites have shown pronounced antiausterity activities against human pancreatic cancer PANC-1 cells.}, subject = {Naphthylisochinolinalkaloide}, language = {en} } @phdthesis{Hecht2021, author = {Hecht, Markus}, title = {Liquid-Crystalline Perylene Bisimide and Diketopyrrolopyrrole Assemblies}, doi = {10.25972/OPUS-21698}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216987}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The research presented in this thesis illustrates that self-assembly of organic molecules guided by intermolecular forces is a versatile bottom-up approach towards functional materials. Through the specific design of the monomers, supramolecular architectures with distinct spatial arrangement of the individual building blocks can be realized. Particularly intriguing materials can be achieved when applying the supramolecular approach to molecules forming liquid-crystalline phases as these arrange in ordered, yet mobile structures. Therefore, they exhibit anisotropic properties on a macroscopic level. It is pivotal to precisely control the interchromophoric arrangement as functions originate in the complex structures that are formed upon self-assembly. Consequently, the aim of this thesis was the synthesis and characterization of liquid-crystalline phases with defined supramolecular arrangements as well as the investigation of the structure-property relationship. For this purpose, perylene bisimide and diketopyrrolopyrrole chromophores were used as they constitute ideal building blocks towards functional supramolecular materials due to their thermal stability, lightfastness, as well as excellent optical and electronic features desirable for the application in, e.g., organic electronics.}, subject = {Selbstorganisation}, language = {en} } @phdthesis{Shen2021, author = {Shen, Chia-An}, title = {Dicyanomethylene Squaraines: Aggregation and G-Quadruplex Complexation}, doi = {10.25972/OPUS-24359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-243599}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Squaraine dyes have attracted more attention in the past decade due to their strong and narrow absorption and fluorescence along with the easily functionalized molecular structure. One successful approach of core functionalization is to replace one oxygen of the squaric carbonyl group with a dicyanomethylene group, which shifts the absorption and emission into the near infrared (NIR) region and at the same time leads to a rigid, planar structure with C2v symmetry. However, such squaraines tend to aggregate cofacially in solution due to dispersion forces and dipole-dipole interactions, usually leading to H-type exciton coupling with undesired blue-shifted spectrum and quenched fluorescence. Therefore, the goal of my research was the design of dicyanomethylene-substituted squaraine dyes that self-assemble into extended aggregates in solution with J-type coupling, in order to retain or even enhance their outstanding optical properties. Toward this goal, bis(squaraine) dyes were envisioned with two squaraine units covalently linked to trigger a slip-stacked packing motif within the aggregates to enable J-type coupling. In my first project, bis(squaraine) dye BisSQ1 was synthesized, in which two dicyanomethylene squaraine chromophores are covalently linked. Concentration and temperature-dependent UV/Vis/NIR spectroscopy experiments reveal that BisSQ1 undergoes cooperative self-assembly resulting in J-type aggregates in a solvent mixture of toluene/1,1,2,2-tetrachloroethane (TCE) (98:2, v/v). The J type exciton coupling is evident from the significantly red shifted absorption maximum at 886 nm and the fluorescence peak at 904 nm. In conclusion, this was a first example to direct squaraine dye aggregation in solution to the more desired slip-stacked packing leading to J-type exciton coupling by simply connecting two dyes in a head-to-tail bis chromophore structure. Connecting two squaraine dyes with an additional phenylene spacer (BisSQ2) leads to two different polymorphs with very distinct absorption spectra upon cooling down a solution of BisSQ2 in a solvent mixture of toluene/TCE (98:2, v/v) with different rates. Accordingly, rapid cooling resulted in rigid helical nanorods with an absorption spectrum showing a panchromatic feature, while slow cooling led to a sheet-like structure with a significant bathochromic shift in the absorption spectrum. It was discovered that the conventional molecular exciton model failed to explain the panchromatic absorption features of the nanorods for the given packing arrangement, therefore more profound theoretical investigations based on the Essential States Model (ESM) were applied to unveil the importance of intermolecular charge transfer (ICT) to adequately describe the panchromatic absorption spectrum. Moreover, the red-shift observed in the spectrum for the sheet-like structure can be assigned to the interplay of Coulomb coupling and ICT-mediated coupling. Furthermore, the same bis-chromophore strategy was adopted for constructing an NIR-II emitter with a bathochromically-shifted spectrum. In chloroform, BisSQ3 exhibits an absorption maximum at 961 nm with a significant bathochromic shift (1020 cm-1) compared to the reference mono-squaraine SQ, indicating intramolecular J-type coupling via head-to-tail arrangement of two squaraine dyes. Moreover, BisSQ3 shows a fluorescence peak at 971 nm with a decent quantum yield of 0.33\%. In less polar toluene, BisSQ3 self-assembles into nanofibers with additional intermolecular J-type coupling, causing a pronounced bathochromic shift with absorption maximum at 1095 nm and a fluorescence peak at 1116 nm. Thus, connecting two quinoline-based squaraines in a head-to-tail fashion leads to not only intra-, but also intermolecular J-type exciton coupling, which serves as a promising strategy to shift the absorption and emission of organic fluorophores into the NIR-II window while retaining decent quantum yields. In conclusion, my research illustrates based on squaraine dyes how a simple modification of the molecular structure can significantly affect the aggregation behavior and further alter the optical properties of dye aggregates. Elongated supramolecular structures based on dicyanomethylene substituted squaraine dyes were successfully established by covalently linking two squaraine units to form a bis-chromophore structure. Then, a simple but efficient general approach was established to direct squaraine dye aggregation in solution to the more desired slip-stacked packing leading to J-type exciton coupling by directly connecting two squaraine dyes in a head-to-tail fashion without spacer units. Moreover, the additional spacer between the squaraine dyes in BisSQ2 allowed different molecular conformations, which leads to two different morphologies depending on the cooling rates for a hot solution. Hence, this is a promising strategy to realize supramolecular polymorphism. In general, it is expected that the concept of constructing J-aggregates by the bis-chromophore approach can be extended to entirely different classes of dyes since J-aggregates possess a variety of features such as spectral shifts into the NIR window, fluorescence enhancement, and light harvesting, which are commonly observed and utilized for numerous fundamental studies and applications. Moreover, the insights on short-range charge transfer coupling for squaraine dyes is considered of relevance for all materials based on alternating donor-acceptor π-systems. The panchromatic spectral feature is in particular crucial for acceptor-donor-acceptor (ADA) dyes, which are currently considered as very promising materials for the development of bulk heterojunction solar cells.}, subject = {Squaraine}, language = {en} } @phdthesis{Michail2021, author = {Michail, Evripidis}, title = {Design and Development of a Two-Photon Absorption Induced Fluorescence Spectrometer and the Investigation of Nonlinear Optical Properties of Organic Chromophores}, doi = {10.25972/OPUS-24218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242185}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Main objectives of the present dissertation can be divided in two parts. The first part deals with setting up a spectroscopic technique for reliable and accurate measurements of the two-photon absorption (2PA) cross section spectra. In the second part, this firmly established experimental technique together with conventional spectroscopic characterization, quantum-chemical computations and theoretical modelling calculations was combined and therefore used as a tool to gain information for the so-called structure-property relationship through several molecular compounds.}, subject = {Nonlinear Optical Properties of Organic Materials}, language = {en} } @phdthesis{Rausch2021, author = {Rausch, Rodger}, title = {Chemistry of Chromophore Bridged Biradicals - Synthesis and Properties}, doi = {10.25972/OPUS-22650}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-226501}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Within this PhD thesis, chromophore-bridged biradicals were synthesised and their properties characterised. Therefore, it was necessary to develop novel synthetic procedures and implement several experimental characterisation methods. In summary, within this thesis the scope of pigment chromophore phenoxyl radical decoration was further explored and expanded to IIn as well as DPP colourants. HOMA analysis highlighted the importance of aromaticity in order to understand the spin crossover from heteroaromatic quinoidal to aromatic open shell DPPs. Finally, PBI, IIn and DPP biradicals were advanced towards stable materials by introduction of nitronyl nitroxide radical centres.}, subject = {Biradikal}, language = {en} } @phdthesis{MezaChincha2021, author = {Meza Chincha, Ana Lucia}, title = {Catalytic Water Oxidation with Functionalized Ruthenium Macrocycles}, doi = {10.25972/OPUS-20962}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-209620}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In light of the rapidly increasing global demand of energy and the negative effects of climate change, innovative solutions that allow an efficient transition to a carbon-neutral economy are urgently needed. In this context, artificial photosynthesis is emerging as a promising technology to enable the storage of the fluctuating energy of sunlight in chemical bonds of transportable "solar fuels". Thus, in recent years much efforts have been devoted to the development of robust water oxidation catalysts (WOCs) leading to the discovery of the highly reactive Ru(bda) (bda: 2,2'-bipyridine-6,6'-dicarboxylic acid) catalyst family. The aim of this thesis was the study of chemical and photocatalytic water oxidation with functionalized Ruthenium macrocycles to explore the impact of substituents on molecular properties and catalytic activities of trinuclear macrocyclic Ru(bda) catalysts. A further objective of this thesis comprises the elucidation of factors that influence the light-driven water oxidation process with this novel class of supramolecular WOCs.}, subject = {Rutheniumkomplexe}, language = {en} } @phdthesis{PeethambaranNairSyamala2021, author = {Peethambaran Nair Syamala, Pradeep}, title = {Bolaamphiphilic Rylene Bisimides: Thermodynamics of Self-assembly and Stimuli-responsive Properties in Water}, doi = {10.25972/OPUS-21342}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213424}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The present thesis demonstrates how different thermodynamic aspects of self-assembly and stimuli-responsive properties in water can be encoded on the structure of π-amphiphiles, consisting of perylene or naphthalene bisimide cores. Initially, quantitative thermodynamic insights into the entropically-driven self-assembly was studied for a series of naphthalene bisimides with UV/Vis and ITC measurements, which demonstrated that their thermodynamic profile of aggregation is heavily influenced by the OEG side chains. Subsequently, a control over the bifurcated thermal response of entropically driven and commonly observed enthalpically driven self-assembly was achieved by the modulation of glycol chain orientation. Finally, Lower Critical Solution Temperature (LCST) phenomenon observed for these dyes was investigated as a precise control of this behavior is quintessential for self-assembly studies as well as to generate 'smart' materials. It could be shown that the onset of phase separation for these molecules can be encoded in their imide substituents, and they are primarily determined by the supramolecular packing, rather than the hydrophobicity of individual monomers.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Renner2021, author = {Renner, Rebecca}, title = {Aggregation, Chirality and Reduction of Nonplanar Polycyclic Aromatic Hydrocarbons}, doi = {10.25972/OPUS-24700}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-247000}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Within this thesis the interactions between novel corannulene derivatives in solution as well as in the solid state by changing the imide residue of a literature known extended corannulene dicarboximide were investigated, in order to obtain a better understanding of the packing and possible charge transport in potential applications. Accordingly, the goal of the work was to synthesize and investigate an electron-poor corannulene bis(dicarboximide) based on previously published work but with higher solubility and less steric encumbrance in imide position to enable self-assembly in solution. To obtain further insights into the conformational stability, structure and chiroptical properties of heavily twisted PBIs another aim of this thesis was the design, synthesis, and optoelectronic investigation of various fourfold directly arylated PBIs by substitution in bay position with smaller hydrocarbons with different steric demand, i.e., benzene, naphthalene and pyrene, which should be separable by chiral high performance liquid chromatography (HPLC). As of yet, no concise study concerning the optical and electronic properties of differently core-substituted PBIs in the neutral as well as the mono- and dianionic state in solution is available, which also elucidates the origin of the different optical transitions observed in the absorption and emission spectra. Thus, in this thesis, the investigation of five PBI derivatives with different frontier energetic levels to produce a reference work of reduced PBIs was tackled.}, subject = {Corannulene}, language = {en} }