@article{BergerFergerMarder2021, author = {Berger, Sarina M. and Ferger, Matthias and Marder, Todd B.}, title = {Synthetic Approaches to Triarylboranes from 1885 to 2020}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {24}, doi = {10.1002/chem.202005302}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238952}, pages = {7043 -- 7058}, year = {2021}, abstract = {In recent years, research in the fields of optoelectronics, anion sensors and bioimaging agents have been greatly influenced by novel compounds containing triarylborane motifs. Such compounds possess an empty p-orbital at boron which results in useful optical and electronic properties. Such a diversity of applications was not expected when the first triarylborane was reported in 1885. Synthetic approaches to triarylboranes underwent various changes over the following century, some of which are still used in the present day, such as the generally applicable routes developed by Krause et al. in 1922, or by Grisdale et al. in 1972 at Eastman Kodak. Some other developments were not pursued further after their initial reports, such as the synthesis of two triarylboranes bearing three different aromatic groups by Mikhailov et al. in 1958. This review summarizes the development of synthetic approaches to triarylboranes from their first report nearly 135 years ago to the present.}, language = {en} } @article{FergerBergerRauchetal.2021, author = {Ferger, Matthias and Berger, Sarina M. and Rauch, Florian and Sch{\"o}nitz, Markus and R{\"u}he, Jessica and Krebs, Johannes and Friedrich, Alexandra and Marder, Todd B.}, title = {Synthesis of Highly Functionalizable Symmetrically and Unsymmetrically Substituted Triarylboranes from Bench-Stable Boron Precursors}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {35}, doi = {10.1002/chem.202100632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256827}, pages = {9094-9101}, year = {2021}, abstract = {A novel and convenient methodology for the one-pot synthesis of sterically congested triarylboranes by using bench-stable aryltrifluoroborates as the boron source is reported. This procedure gives systematic access to symmetrically and unsymmetrically substituted triarylboranes of the types BAr\(_{2}\)Ar' and BArAr'Ar'', respectively. Three unsymmetrically substituted triarylboranes as well as their iridium-catalyzed C-H borylation products are reported. These borylated triarylboranes contain one to three positions that can subsequently be orthogonally functionalized in follow-up reactions, such as Suzuki-Miyaura cross-couplings or Sonogashira couplings.}, language = {en} } @article{BergerRueheSchwarzmannetal.2021, author = {Berger, Sarina M. and R{\"u}he, Jessica and Schwarzmann, Johannes and Phillipps, Alexandra and Richard, Ann-Katrin and Ferger, Matthias and Krummenacher, Ivo and Tumir, Lidija-Marija and Ban, Željka and Crnolatac, Ivo and Majhen, Dragomira and Barišić, Ivan and Piantanida, Ivo and Schleier, Domenik and Griesbeck, Stefanie and Friedrich, Alexandra and Braunschweig, Holger and Marder, Todd B.}, title = {Bithiophene-Cored, mono-, bis-, and tris-(Trimethylammonium)-Substituted, bis-Triarylborane Chromophores: Effect of the Number and Position of Charges on Cell Imaging and DNA/RNA Sensing}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {56}, doi = {10.1002/chem.202102308}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256963}, pages = {14057-14072}, year = {2021}, abstract = {The synthesis, photophysical, and electrochemical properties of selectively mono-, bis- and tris-dimethylamino- and trimethylammonium-substituted bis-triarylborane bithiophene chromophores are presented along with the water solubility and singlet oxygen sensitizing efficiency of the cationic compounds Cat\(^{1+}\), Cat\(^{2+}\), Cat(i)\(^{2+}\), and Cat\(^{3+}\). Comparison with the mono-triarylboranes reveals the large influence of the bridging unit on the properties of the bis-triarylboranes, especially those of the cationic compounds. Based on these preliminary investigations, the interactions of Cat\(^{1+}\), Cat\(^{2+}\), Cat(i)\(^{2+}\), and Cat\(^{3+}\) with DNA, RNA, and DNApore were investigated in buffered solutions. The same compounds were investigated for their ability to enter and localize within organelles of human lung carcinoma (A549) and normal lung (WI38) cells showing that not only the number of charges but also their distribution over the chromophore influences interactions and staining properties.}, language = {en} }