@article{KueblerBlankertzKleihetal.2014, author = {K{\"u}bler, Andrea and Blankertz, Benjamin and Kleih, Sonja C. and Kaufmann, Tobias and Hammer, Eva M.}, title = {Visuo-motor coordination ability predicts performance with brain-computer interfaces controlled by modulation of sensorimotor rhythms (SMR)}, doi = {10.3389/fnhum.2014.00574}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113084}, year = {2014}, abstract = {Modulation of sensorimotor rhythms (SMR) was suggested as a control signal for brain-computer interfaces (BCI). Yet, there is a population of users estimated between 10 to 50\% not able to achieve reliable control and only about 20\% of users achieve high (80-100\%) performance. Predicting performance prior to BCI use would facilitate selection of the most feasible system for an individual, thus constitute a practical benefit for the user, and increase our knowledge about the correlates of BCI control. In a recent study, we predicted SMR-BCI performance from psychological variables that were assessed prior to the BCI sessions and BCI control was supported with machine-learning techniques. We described two significant psychological predictors, namely the visuo-motor coordination ability and the ability to concentrate on the task. The purpose of the current study was to replicate these results thereby validating these predictors within a neurofeedback based SMR-BCI that involved no machine learning.Thirty-three healthy BCI novices participated in a calibration session and three further neurofeedback training sessions. Two variables were related with mean SMR-BCI performance: (1) a measure for the accuracy of fine motor skills, i.e., a trade for a person's visuo-motor control ability; and (2) subject's "attentional impulsivity". In a linear regression they accounted for almost 20\% in variance of SMR-BCI performance, but predictor (1) failed significance. Nevertheless, on the basis of our prior regression model for sensorimotor control ability we could predict current SMR-BCI performance with an average prediction error of M = 12.07\%. In more than 50\% of the participants, the prediction error was smaller than 10\%. Hence, psychological variables played a moderate role in predicting SMR-BCI performance in a neurofeedback approach that involved no machine learning. Future studies are needed to further consolidate (or reject) the present predictors.}, language = {en} } @article{AcqualagnaBotrelVidaurreetal.2016, author = {Acqualagna, Laura and Botrel, Loic and Vidaurre, Carmen and K{\"u}bler, Andrea and Blankertz, Benjamin}, title = {Large-Scale Assessment of a Fully Automatic Co-Adaptive Motor Imagery-Based Brain Computer Interface}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {2}, doi = {10.1371/journal.pone.0148886}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167230}, pages = {e0148886}, year = {2016}, abstract = {In the last years Brain Computer Interface (BCI) technology has benefited from the development of sophisticated machine leaning methods that let the user operate the BCI after a few trials of calibration. One remarkable example is the recent development of co-adaptive techniques that proved to extend the use of BCIs also to people not able to achieve successful control with the standard BCI procedure. Especially for BCIs based on the modulation of the Sensorimotor Rhythm (SMR) these improvements are essential, since a not negligible percentage of users is unable to operate SMR-BCIs efficiently. In this study we evaluated for the first time a fully automatic co-adaptive BCI system on a large scale. A pool of 168 participants naive to BCIs operated the co-adaptive SMR-BCI in one single session. Different psychological interventions were performed prior the BCI session in order to investigate how motor coordination training and relaxation could influence BCI performance. A neurophysiological indicator based on the Power Spectral Density (PSD) was extracted by the recording of few minutes of resting state brain activity and tested as predictor of BCI performances. Results show that high accuracies in operating the BCI could be reached by the majority of the participants before the end of the session. BCI performances could be significantly predicted by the neurophysiological indicator, consolidating the validity of the model previously developed. Anyway, we still found about 22\% of users with performance significantly lower than the threshold of efficient BCI control at the end of the session. Being the inter-subject variability still the major problem of BCI technology, we pointed out crucial issues for those who did not achieve sufficient control. Finally, we propose valid developments to move a step forward to the applicability of the promising co-adaptive methods.}, language = {en} }