@article{HaiderAhmadYangetal.2021, author = {Haider, Malik Salman and Ahmad, Taufiq and Yang, Mengshi and Hu, Chen and Hahn, Lukas and Stahlhut, Philipp and Groll, J{\"u}rgen and Luxenhofer, Robert}, title = {Tuning the thermogelation and rheology of poly(2-oxazoline)/poly(2-oxazine)s based thermosensitive hydrogels for 3D bioprinting}, series = {Gels}, volume = {7}, journal = {Gels}, number = {3}, issn = {2310-2861}, doi = {10.3390/gels7030078}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-241781}, year = {2021}, abstract = {As one kind of "smart" material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈100 repeat units). The tube inversion and rheological tests showed that the material has then a reversible sol-gel transition above 25 wt.\% concentration. Rheological tests further revealed a gel strength around 3 kPa, high shear thinning property and rapid shear recovery after stress, which are highly desirable properties for extrusion based three-dimensional (3D) (bio) printing. Attributed to the rheology profile, well resolved printability and high stackability (with added laponite) was also possible. (Cryo) scanning electron microscopy exhibited a highly porous, interconnected, 3D network. The sol-state at lower temperatures (in ice bath) facilitated the homogeneous distribution of (fluorescently labelled) human adipose derived stem cells (hADSCs) in the hydrogel matrix. Post-printing live/dead assays revealed that the hADSCs encapsulated within the hydrogel remained viable (≈97\%). This thermoreversible and (bio) printable hydrogel demonstrated promising properties for use in tissue engineering applications.}, language = {en} } @phdthesis{Hu2022, author = {Hu, Chen}, title = {Novel hybrid hydrogels based on poly(2-oxazoline)}, doi = {10.25972/OPUS-27935}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279354}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Motivated by the great potential offered by the combination of additive manufacturing technology and hydrogels, especially in the field of tissue engineering and regenerative medicine, a series of novel hybrid hydrogel inks were developed based on the recently described thermogelling poly(2-oxazoline)s-block-poly(2-oxazine)s diblock copolymers, which may help to expand the platform of available hydrogel inks for this transformative 3D printing technology (Fig. 5.1). In the present thesis, the first reported thermogelling polymer solely consisting of POx and POzi, i.e., the diblock copolymer PMeOx-b-PnPrOzi comprising a hydrophilic block (PMeOx) and a thermoresponsive block (PnPrOzi), was selected and used as a proof-of-concept for the preparation of three novel hybrid hydrogels. Therefore, three batches of the diblock copolymers with a DP of 100 were synthesized for the study of three different hybrid hydrogels with a special focus on their suitability as (bio)inks for extrusion-based 3D printing. The PMeOx-b-PnPrOzi diblock copolymer solution shows a temperature induced reversible gelation behavior above a critical polymer concentration of 20 wt\%, as described for the Pluronic F127 solution but with a unique gelation mechanism, working through the formation of a bicontinuous sponge-like structure from the physically crosslinked vesicles. Specially, its intrinsic shear thinning behavior and excellent recovery property with a certain yield point make it a promising ink candidate for extrusion-based printing technology. Increasing the polymer concentration is the most traditional approach to improve the printability of an ink material, and serve as the major strategy available to improve the printability of PMeOx-b-PnPrOzi systems prior to this work. From the analysis of rheological properties related to printability, it came a conclusion that increasing the copolymer concentration does improve the hydrogel strength and thus the printability. However, such improvement is very limited and usually leads to other problems such as more viscous systems and stringent requirements on the printers, which are not ideal for the printing process and applications especially in the cell-embedded biofabrication field. POx-b-POzi/clay Hybrid Hydrogel An alternative method proposed to improve the printability of this thermoresponsive hydrogel ink is through nanoclay (Laponite XLG) addition, i.e., the first hybrid hydrogel system of PMeOx-b-PnPrOzi/clay (also named shortly as POx-b-POzi/clay) in this thesis. To optimize the viscoelastic properties of the ink material, Laponite XLG acted as a reinforcement additive and a physically crosslinker was blended with the copolymers. Compared with the pristine copolymer solution of PMeOx-b-PnPrOzi, the hybrid PMeOx-b-PnPrOzi/clay solution well retained the temperature induced gelation performance of the copolymers. The obtained hybrid hydrogels exhibited a rapid in situ reversible thermogelation at a physiological relevant Tgel of around 15 ℃ and a rapid recovery of viscoelastic properties within a few seconds. More importantly, with the addition of only a small amount of 1.2 wt\% clay, it exhibited obviously enhanced shear thinning character (n = 0.02), yield stress (240 Pa) and mechanical strength (storage modulus over 5 kPa). With this novel hybrid hydrogel, real three-dimensional constructs with multiple layers and various geometries are generation with greatly enhanced shape fidelity and resolution. In this context, the thermogelling properties of the hybrid hydrogels over a copolymer concentration range of 10-20 wt\% and a clay concentration of 0-4 wt\% were systematically investigated, and from which a printable window was obtained from the laboratory as a reference. In fact, the printing performance of an ink is not only determined by the intrinsic physicochemical properties of the material, but is also influenced by the external printing environments as well as the printer parameter settings. All the printing experiments in this study were conducted under a relatively optimized conditions obtained from preliminary experiments. In future work, the relationship between material rheology properties, printer parameters and printing performance could be systematically explored. Such a fundamental study will help to develop models that allows the prediction and comparison of printing results from different researches based on the parameters available through rheology, which is very beneficial for further development of more advanced ink systems. Although the printability has been significantly improved by the addition of nanoclay Laponite XLG, the hybrid hydrogels and their printed constructs still suffer from some major limitations. For example, these materials are still thermoresponsive, which will cause the printed constructs to collapse when the environment temperature changes below their Tgel. In addition, the formed hydrogel constructs are mechanical too weak for load-bearing applications, and the allowed incubation time is very limited during media exchange/addition as it will lead to dissolution of the hydrogels due to dilution effects. Therefore, it is essential to establish a second (chemical or physical) crosslinking mechanism that allows further solidification of the gels after printing. It should be kept in mind that the second crosslinking step will eliminate the thermoresponsive behavior of the gels and thus the possibility of cell recovery. In this case, besides through the traditional approach of copolymer modification to realize further crosslinking, like one of the well-known post-polymerization modification approach Diels-Alder reaction,[430] designing of interpenetrating networks (IPN) hydrogels serves as one of the major strategy for advanced (bio)ink preparation.[311] Therefore, the second hybrid hydrogel system of PMeOx-b-PnPrOzi/PDMAA/clay (also named shortly as POx-b-POzi/PDMAA/clay) was developed in this thesis, which is a 3D printable and highly stretchable ternary organic-inorganic IPN hydrogel. POx-b-POzi/PDMAA/clay Hybrid Hydrogel The nanocomposite IPN hydrogel combines a thermoresponsive hydrogel with clay described above and in situ polymerized poly(N, N-dimethylacrylamide). Before in situ polymerization, the thermoresponsive hydrogel precursors exhibited thermogelling behavior (Tgel ~ 25 ℃, G' ~ 6 kPa) and shear thinning properties, making the system well-suited for extrusion-based 3D printing. After chemical curing of the 3D-printed constructs by free radical polymerization, the resulting IPN hydrogels show excellent mechanical strength with a high stretchability to a tensile strain at break exceeding 550\%. The hybrid hydrogel can sustain a high stretching deformation and recover quickly due to the energy dissipation from the non-covalent interactions. With this hybrid hydrogel, integrating with the advanced 3D-printing technique, various 3D constructs can be printed and cured successfully with high shape fidelity and geometric accuracy. In this context, we also investigated the possibility of acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as alternative hydrogel precursors. However, the addition of these two monomers affected the thermogelation of POx-b-POzi in an unfavorable manner, as these monomers competed more effectively with water molecules, preventing the hydration of nPrOzi block at lower temperatures and therefore, the liquefaction of the gels. Furthermore, the influence of the printing process and direction on the mechanical properties of the hydrogel was investigated and compared with the corresponding bulk materials obtained from a mold. No significant effects from the additive manufacturing process were observed due to a homogeneously adhesion and merging between sequentially deposited layers. In the future, further studies on the specific performance differences among hydrogels fabricated at different printing directions/speeds would be of great interest to the community, as this allows for a more accurately control and better predict of the printed structures. This newly developed hybrid IPN hydrogel is expected to expand the material toolbox available for hydrogel-based 3D printing, and may be interesting for a wide range of applications including tissue engineering, drug delivery, soft robotics, and additive manufacturing in general. However, in this case, the low toxicity from the monomer DMAA and other small molecules residuals in the polymerized hydrogels made this hybrid hydrogel not ideal for bioprinting in the field of biofabrication. For this problem, cyto-/biocompatible monomers such as polyethylene glycol diacrylate (PEGDA) can be used as an alternative, while the overall properties of the hydrogels including mechanical properties should be re-evaluated accordingly. Moreover, the swelling behavior of the hydrogels should also be taken into account, as it may most likely affect the mechanical strength and geometry size of the printed scaffold, but is often be overlooked after printing. For example, regarding the specific hybrid hydrogel POx-b-POzi/PDMAA/clay in this work, an equilibrium swelling ratio of 1100\% was determined. The printed hydrogel cuboid experienced a volume increasing over 6-fold after equilibrium swelling in water, and became mechanical fragile due to the formation of a swollen hydrogel network absorbing large amount of water. POx-b-POzi/Alg/clay Hybrid Hydrogel In the final part of this dissertation, to enable the cell-loaded bioprinting and long-term cell culture, the third hybrid hydrogel system POx-b-POzi/Alg/clay was introduced by replacing the monomer DMAA to the natural polysaccharides alginate. Initially, detailed rheological characterization and mechanical tests were performed to evaluate their printability and mechanically properties. Subsequently, some simple patterns were printed with the optimized hydrogel precursor solutions for the preliminary filament fusion and collapse test before proceeding to more complex printings. The fibers showed a sufficient stability which allows the creation of large structures with a height of a few centimeters and a suspended filament up to centimeter. Accordingly, various 3D constructs including suspended filaments were printed successfully with high stackability and shape fidelity. The structure after extrusion was physical crosslinked easily by soaking in CaCl2 solution and, thereafter exhibited a good mechanical flexibility and long-term stability. Interestingly, the mechanical strength and geometry size of the generated scaffolds were well maintained over a culture period of weeks in water, which is of great importance for clinical applications. In addition, the post-printing ionic crosslinking of alginate could also be realized by other di/trivalent cations such as Fe3+ and Tb3+. Subsequently, the cell-laden printing with this hybrid hydrogel and post-printing crosslinking by Ca2+ ions highlighting its feasibility for 3D bioprinting. WST-1 assay of fibroblast suggested no-dose dependent cytocompatibility of the hydrogel precursor solution. The cell distribution was uniform throughout the printed construct, and proliferated with high cell viability during the 21 days culture. The presented hybrid approach, utilizing the beneficial properties of the POx-b-POzi base material, could be interesting for a wide range of bioprinting applications and potentially enabling also other biological bioinks such as collagen, hyaluronic acid, decellularized extracellular matrix or cellulose based bioinks. Although the results look promising and the developed hydrogel is an important bioink candidate, the long-term in vitro cell studies with different cell lines and clinical model establishment are still under investigation, which remains a long road but is of great importance before realizing real clinical application. Last but not least, the improvement to the printability of thermogelling POx/POzi-based copolymers by the clay Laponite XLG was also demonstrated in another thermogelling copolymer PEtOx-b-PnPrOzi. This suggests that the addition of clay may be a general strategy to improve the printability of such polymers. Despite these advances in this work which significantly extended the (bio)material platform of additive manufacturing technology, the competition is still fierce and more work should be done in the further to reveal the potential and limitations of this kind of new and promising candidate (bio)ink materials. It is also highly expected for further creative works based on the thermogelling POx/POzi polymers, such as crosslinking in Ca2+ solution containing monomer acrylamide to prepare printable and mechanically tough hydrogels, research on POx-based support bath material, and print of clinically more relevant sophisticated structures such as 3D microvascular networks omnidirectionally.}, subject = {Funktionsgel}, language = {en} } @article{HuHahnYangetal.2021, author = {Hu, Chen and Hahn, Lukas and Yang, Mengshi and Altmann, Alexander and Stahlhut, Philipp and Groll, J{\"u}rgen and Luxenhofer, Robert}, title = {Improving printability of a thermoresponsive hydrogel biomaterial ink by nanoclay addition}, series = {Journal of Materials Science}, volume = {56}, journal = {Journal of Materials Science}, issn = {0022-2461}, doi = {10.1007/s10853-020-05190-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234894}, pages = {691-705}, year = {2021}, abstract = {As a promising biofabrication technology, extrusion-based bioprinting has gained significant attention in the last decade and major advances have been made in the development of bioinks. However, suitable synthetic and stimuli-responsive bioinks are underrepresented in this context. In this work, we described a hybrid system of nanoclay Laponite XLG and thermoresponsive block copolymer poly(2-methyl-2-oxazoline)-b-poly(2-n-propyl-2-oxazine) (PMeOx-b-PnPrOzi) as a novel biomaterial ink and discussed its critical properties relevant for extrusion-based bioprinting, including viscoelastic properties and printability. The hybrid hydrogel retains the thermogelling properties but is strengthened by the added clay (over 5 kPa of storage modulus and 240 Pa of yield stress). Importantly, the shear-thinning character is further enhanced, which, in combination with very rapid viscosity recovery (~ 1 s) and structure recovery (~ 10 s), is highly beneficial for extrusion-based 3D printing. Accordingly, various 3D patterns could be printed with markedly enhanced resolution and shape fidelity compared to the biomaterial ink without added clay.}, language = {en} }