@article{KirylukYifuSannaCherchietal.2012, author = {Kiryluk, Krzysztof and Yifu, Li and Sanna-Cherchi, Simone and Rohanizadegan, Mersedeh and Suzuki, Hitoshi and Eitner, Frank and Snyder, Holly J. and Choi, Murim and Hou, Ping and Scolari, Francesco and Izzi, Claudia and Gigante, Maddalena and Gesualdo, Loreto and Savoldi, Silvana and Amoroso, Antonio and Cusi, Daniele and Zamboli, Pasquale and Julian, Bruce A. and Novak, Jan and Wyatt, Robert J. and Mucha, Krzysztof and Perola, Markus and Kristiansson, Kati and Viktorin, Alexander and Magnusson, Patrik K. and Thorleifsson, Gudmar and Thorsteinsdottir, Unnur and Stefansson, Kari and Boland, Anne and Metzger, Marie and Thibaudin, Lise and Wanner, Christoph and Jager, Kitty J. and Goto, Shin and Maixnerova, Dita and Karnib, Hussein H. and Nagy, Judit and Panzer, Ulf and Xie, Jingyuan and Chen, Nan and Tesar, Vladimir and Narita, Ichiei and Berthoux, Francois and Floege, J{\"u}rgen and Stengel, Benedicte and Zhang, Hong and Lifton, Richard P. and Gharavi, Ali G.}, title = {Geographic Differences in Genetic Susceptibility to IgA Nephropathy: GWAS Replication Study and Geospatial Risk Analysis}, series = {PLoS Genetics}, volume = {8}, journal = {PLoS Genetics}, number = {6}, doi = {10.1371/journal.pgen.1002765}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130195}, pages = {e1002765}, year = {2012}, abstract = {IgA nephropathy (IgAN), major cause of kidney failure worldwide, is common in Asians, moderately prevalent in Europeans, and rare in Africans. It is not known if these differences represent variation in genes, environment, or ascertainment. In a recent GWAS, we localized five IgAN susceptibility loci on Chr.6p21 (HLA-DQB1/DRB1, PSMB9/TAP1, and DPA1/DPB2 loci), Chr.1q32 (CFHR3/R1 locus), and Chr.22q12 (HORMAD2 locus). These IgAN loci are associated with risk of other immune-mediated disorders such as type I diabetes, multiple sclerosis, or inflammatory bowel disease. We tested association of these loci in eight new independent cohorts of Asian, European, and African-American ancestry (N = 4,789), followed by meta-analysis with risk-score modeling in 12 cohorts (N = 10,755) and geospatial analysis in 85 world populations. Four susceptibility loci robustly replicated and all five loci were genome-wide significant in the combined cohort (P = 5x10\(^{-32}\) 3x10\(^{-10}\), with heterogeneity detected only at the PSMB9/TAP1 locus (I\(^{-2}\) = 0.60). Conditional analyses identified two new independent risk alleles within the HLA-DQB1/DRB1 locus, defining multiple risk and protective haplotypes within this interval. We also detected a significant genetic interaction, whereby the odds ratio for the HORMAD2 protective allele was reversed in homozygotes for a CFHR3/R1 deletion (P = 2.5x10\(^{-4}\)). A seven-SNP genetic risk score, which explained 4.7\% of overall IgAN risk, increased sharply with Eastward and Northward distance from Africa (r = 0.30, P = 3x10\(^{-128}\)). This model paralleled the known East-West gradient in disease risk. Moreover, the prediction of a South-North axis was confirmed by registry data showing that the prevalence of IgAN-attributable kidney failure is increased in Northern Europe, similar to multiple sclerosis and type I diabetes. Variation at IgAN susceptibility loci correlates with differences in disease prevalence among world populations. These findings inform genetic, biological, and epidemiological investigations of IgAN and permit cross-comparison with other complex traits that share genetic risk loci and geographic patterns with IgAN.}, language = {en} } @article{MitchellLiWeinholdetal.2016, author = {Mitchell, Jonathan S. and Li, Ni and Weinhold, Niels and F{\"o}rsti, Asta and Ali, Mina and van Duin, Mark and Thorleifsson, Gudmar and Johnson, David C. and Chen, Bowang and Halvarsson, Britt-Marie and Gudbjartsson, Daniel F. and Kuiper, Rowan and Stephens, Owen W. and Bertsch, Uta and Broderick, Peter and Campo, Chiara and Einsele, Hermann and Gregory, Walter A. and Gullberg, Urban and Henrion, Marc and Hillengass, Jens and Hoffmann, Per and Jackson, Graham H. and Johnsson, Ellinor and J{\"o}ud, Magnus and Kristinsson, Sigurdur Y. and Lenhoff, Stig and Lenive, Oleg and Mellqvist, Ulf-Henrik and Migliorini, Gabriele and Nahi, Hareth and Nelander, Sven and Nickel, Jolanta and N{\"o}then, Markus M. and Rafnar, Thorunn and Ross, Fiona M. and da Silva Filho, Miguel Inacio and Swaminathan, Bhairavi and Thomsen, Hauke and Turesson, Ingemar and Vangsted, Annette and Vogel, Ulla and Waage, Anders and Walker, Brian A. and Wihlborg, Anna-Karin and Broyl, Annemiek and Davies, Faith E. and Thorsteinsdottir, Unnur and Langer, Christian and Hansson, Markus and Kaiser, Martin and Sonneveld, Pieter and Stefansson, Kari and Morgan, Gareth J. and Goldschmidt, Hartmut and Hemminki, Kari and Nilsson, Bj{\"o}rn and Houlston, Richard S.}, title = {Genome-wide association study identifies multiple susceptibility loci for multiple myeloma}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms12050}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165983}, pages = {12050}, year = {2016}, abstract = {Multiple myeloma (MM) is a plasma cell malignancy with a significant heritable basis. Genome-wide association studies have transformed our understanding of MM predisposition, but individual studies have had limited power to discover risk loci. Here we perform a meta-analysis of these GWAS, add a new GWAS and perform replication analyses resulting in 9,866 cases and 239,188 controls. We confirm all nine known risk loci and discover eight new loci at 6p22.3 (rs34229995, P=1.31 × 10-8), 6q21 (rs9372120, P=9.09 × 10-15), 7q36.1 (rs7781265, P=9.71 × 10-9), 8q24.21 (rs1948915, P=4.20 × 10-11), 9p21.3 (rs2811710, P=1.72 × 10-13), 10p12.1 (rs2790457, P=1.77 × 10-8), 16q23.1 (rs7193541, P=5.00 × 10-12) and 20q13.13 (rs6066835, P=1.36 × 10-13), which localize in or near to JARID2, ATG5, SMARCD3, CCAT1, CDKN2A, WAC, RFWD3 and PREX1. These findings provide additional support for a polygenic model of MM and insight into the biological basis of tumour development.}, language = {en} }