@article{WestburyTurroGreeneetal.2015, author = {Westbury, Sarah K and Turro, Ernest and Greene, Daniel and Lentaigne, Claire and Kelly, Anne M and Bariana, Tadbir K and Simeoni, Ilenia and Pillois, Xavier and Attwood, Antony and Austin, Steve and Jansen, Sjoert BG and Bakchoul, Tamam and Crisp-Hihn, Abi and Erber, Wendy N and Favier, R{\´e}mi and Foad, Nicola and Gattens, Michael and Jolley, Jennifer D and Liesner, Ri and Meacham, Stuart and Millar, Carolyn M and Nurden, Alan T and Peerlinck, Kathelijne and Perry, David J and Poudel, Pawan and Schulman, Sol and Schulze, Harald and Stephens, Jonathan C and Furie, Bruce and Robinson, Peter N and van Geet, Chris and Rendon, Augusto and Gomez, Keith and Laffan, Michael A and Lambert, Michele P and Nurden, Paquita and Ouwehand, Willem H and Richardson, Sylvia and Mumford, Andrew D and Freson, Kathleen}, title = {Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders}, series = {Genome Medicine}, volume = {7}, journal = {Genome Medicine}, number = {36}, doi = {10.1186/s13073-015-0151-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143329}, year = {2015}, abstract = {Background: Heritable bleeding and platelet disorders (BPD) are heterogeneous and frequently have an unknown genetic basis. The BRIDGE-BPD study aims to discover new causal genes for BPD by high throughput sequencing using cluster analyses based on improved and standardised deep, multi-system phenotyping of cases. Methods: We report a new approach in which the clinical and laboratory characteristics of BPD cases are annotated with adapted Human Phenotype Ontology (HPO) terms. Cluster analyses are then used to characterise groups of cases with similar HPO terms and variants in the same genes. Results: We show that 60\% of index cases with heritable BPD enrolled at 10 European or US centres were annotated with HPO terms indicating abnormalities in organ systems other than blood or blood-forming tissues, particularly the nervous system. Cases within pedigrees clustered closely together on the bases of their HPO-coded phenotypes, as did cases sharing several clinically suspected syndromic disorders. Cases subsequently found to harbour variants in ACTN1 also clustered closely, even though diagnosis of this recently described disorder was not possible using only the clinical and laboratory data available to the enrolling clinician. Conclusions: These findings validate our novel HPO-based phenotype clustering methodology for known BPD, thus providing a new discovery tool for BPD of unknown genetic basis. This approach will also be relevant for other rare diseases with significant genetic heterogeneity.}, language = {en} } @article{StrittNurdenFavieretal.2016, author = {Stritt, Simon and Nurden, Paquita and Favier, Remi and Favier, Marie and Ferioli, Silvia and Gotru, Sanjeev K. and van Eeuwijk, Judith M.M. and Schulze, Harald and Nurden, Alan T. and Lambert, Michele P. and Turro, Ernest and Burger-Stritt, Stephanie and Matsushita, Masayuki and Mittermeier, Lorenz and Ballerini, Paola and Zierler, Susanna and Laffan, Michael A. and Chubanov, Vladimir and Gudermann, Thomas and Nieswandt, Bernhard and Braun, Attila}, title = {Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg\(^{2+}\) homeostasis and cytoskeletal architecture}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, doi = {10.1038/ncomms11097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173843}, year = {2016}, abstract = {Mg\(^{2+}\) plays a vital role in platelet function, but despite implications for life-threatening conditions such as stroke or myocardial infarction, the mechanisms controlling [Mg\(^{2+}\)]i in megakaryocytes (MKs) and platelets are largely unknown. Transient receptor potential melastatin-like 7 channel (TRPM7) is a ubiquitous, constitutively active cation channel with a cytosolic α-kinase domain that is critical for embryonic development and cell survival. Here we report that impaired channel function of TRPM7 in MKs causes macrothrombocytopenia in mice (Trpm7\(^{fl/fl-Pf4Cre}\)) and likely in several members of a human pedigree that, in addition, suffer from atrial fibrillation. The defect in platelet biogenesis is mainly caused by cytoskeletal alterations resulting in impaired proplatelet formation by Trpm7\(^{fl/fl-Pf4Cre}\) MKs, which is rescued by Mg\(^{2+}\) supplementation or chemical inhibition of non-muscle myosin IIA heavy chain activity. Collectively, our findings reveal that TRPM7 dysfunction may cause macrothrombocytopenia in humans and mice.}, language = {en} } @article{DuettingGaitsIacovoniStegneretal.2017, author = {D{\"u}tting, Sebastian and Gaits-Iacovoni, Frederique and Stegner, David and Popp, Michael and Antkowiak, Adrien and van Eeuwijk, Judith M.M. and Nurden, Paquita and Stritt, Simon and Heib, Tobias and Aurbach, Katja and Angay, Oguzhan and Cherpokova, Deya and Heinz, Niels and Baig, Ayesha A. and Gorelashvili, Maximilian G. and Gerner, Frank and Heinze, Katrin G. and Ware, Jerry and Krohne, Georg and Ruggeri, Zaverio M. and Nurden, Alan T. and Schulze, Harald and Modlich, Ute and Pleines, Irina and Brakebusch, Cord and Nieswandt, Bernhard}, title = {A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15838}, doi = {10.1038/ncomms15838}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170797}, year = {2017}, abstract = {Blood platelets are produced by large bone marrow (BM) precursor cells, megakaryocytes (MKs), which extend cytoplasmic protrusions (proplatelets) into BM sinusoids. The molecular cues that control MK polarization towards sinusoids and limit transendothelial crossing to proplatelets remain unknown. Here, we show that the small GTPases Cdc42 and RhoA act as a regulatory circuit downstream of the MK-specific mechanoreceptor GPIb to coordinate polarized transendothelial platelet biogenesis. Functional deficiency of either GPIb or Cdc42 impairs transendothelial proplatelet formation. In the absence of RhoA, increased Cdc42 activity and MK hyperpolarization triggers GPIb-dependent transmigration of entire MKs into BM sinusoids. These findings position Cdc42 (go-signal) and RhoA (stop-signal) at the centre of a molecular checkpoint downstream of GPIb that controls transendothelial platelet biogenesis. Our results may open new avenues for the treatment of platelet production disorders and help to explain the thrombocytopenia in patients with Bernard-Soulier syndrome, a bleeding disorder caused by defects in GPIb-IX-V.}, language = {en} }