@phdthesis{Alboteanu2007, author = {Alboteanu, Ana Maria}, title = {The Noncommutative Standard Model : Construction Beyond Leading Order in Theta and Collider Phenomenology}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24334}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Trotz seiner pr{\"a}zisen {\"U}bereinstimmung mit dem Experiment ist die G{\"u}ltigkeit des Standardmodells (SM) der Elementarteilchenphysik bislang nur bis zu einer Energieskala von einigen hundert GeV gesichert. Abgesehen davon erweist sich schon das Einbinden der Gravitation in einer einheitlichen Beschreibung aller fundamentalen Wechselwirkungen als ein durch gew{\"o}hnliche Quantenfeldtheorie nicht zu l{\"o}sendes Problem. Das Interesse an Quantenfeldtheorien auf einer nichtkommutativen Raumzeit wurde durch deren Vorhersage als niederenergetischer Limes von Stringtheorien erweckt. Unabh{\"a}ngig davon, kann die Nichtlokalit{\"a}t einer solchen Theorie den Rahmen zur Einbeziehung der Gravitation in eine vereinheitlichende Theorie liefern. Die Hoffnung besteht, dass die Energieskala Lambda_NC, ab der solche Effekte sichtbar werden k{\"o}nnen und f{\"u}r die es einerlei theoretischen Vorhersagen gibt, schon bei der n{\"a}chsten Generation von Beschleunigern erreicht wird. Auf dieser Annahme beruht auch die vorliegende Arbeit, im Rahmen deren eine m{\"o}gliche Realisierung von Quantenfeldtheorien auf nichtkommutativer Raumzeit auf ihre ph{\"a}nomenologischen Konsequenzen hin untersucht wurde. Diese Arbeit ist durch fehlende LHC (Large Hadron Collider) Studien f{\"u}r nichkommutative Quantenfeldtheorien motiviert. Im ersten Teil des Vorhabens wurde der hadronische Prozess pp-> Z gamma -> l+l- gamma am LHC sowie die Elektron-Positron Paarvernichtung in ein Z-Boson und ein Photon am ILC (International Linear Collider) auf nichtkommutative Signale hin untersucht. Die ph{\"a}nomenlogischen Untersuchungen wurden im Rahmen dieses Modells in erster Ordnung des nichtkommutativen Parameters Theta durchgef{\"u}hrt. Eine nichtkommutative Raumzeit f{\"u}hrt zur Brechung der Rotationsinvarianz bez{\"u}glich der Strahlrichtung der einlaufenden Teilchen. Im differentiellen Wirkungsquerschnitt f{\"u}r Streuprozesse {\"a}ussert sich dieses als eine azimuthale Abh{\"a}ngigkeit, die weder im SM noch in anderen Modellen jenseits des SM auftritt. Diese klare, f\"ur nichtkommutative Theorien typische Signatur kann benutzt werden, um nichtkommutative Modelle von anderen Modellen, die neue Physik beschreiben, zu unterscheiden. Auch hat es sich erwiesen, dass die azimuthale Abh{\"a}ngigkeit des Wirkungsquerschnittes am besten daf\"ur geeignet ist, um die Sensitivit{\"a}t des LHC und des ILC auf der nichtkommutativen Skala \$\Lnc\$ zu bestimmen. Im ph{\"a}nomenologischen Teil der Arbeit wurde herausgefunden, dass Messungen am LHC f{\"u}r den Prozess pp-> Z gamma-> l+l- gamma nur in bestimmten F{\"a}llen auf nichtkommutative Effekte sensitiv sind. F{\"u}r diese F{\"a}lle wurde f{\"u}r die nichtkommutative Energieskala Lambda_NC eine Grenze von Lambda_NC > 1.2 TeV bestimmt. Diese ist um eine Gr{\"o}ßenordnung h{\"o}her als die Grenzen, die von bisherigen Beschleunigerexperimenten hergeleitet wurden. Bei einem zuk{\"u}nftigen Linearbeschleuniger, dem ILC, wird die Grenze auf Lambda_NC im Prozess e^+e^- -> Z gamma -> l^+ l^- gamma wesentlich erh{\"o}ht (bis zu 6 TeV). Abgesehen davon ist dem ILC gerade der f{\"u}r den LHC kaum zug{\"a}ngliche Parameterbereich der nichtkommutativen Theorie erschlossen, was die Komplementarit{\"a}t der beiden Beschleunigerexperimente hinsichtlich der nichtkommutativen Parameter zeigt. Der zweite Teil der Arbeit entwickelte sich aus der Notwendigkeit heraus, den G{\"u}ltigkeitsbereich der Theorie zu h{\"o}heren Energien hin zu erweitern. Daf{\"u}r haben wir den neutralen Sektor des nichtkommutativen SM um die n{\"a}chste Ordnung in Theta erg{\"a}nzt. Es stellte sich wider Erwarten heraus, dass die Theorie dabei um einige freie Parameter erweitert werden muss. Die zus{\"a}tzlichen Parameter sind durch die homogenen L{\"o}sungen der Eich{\"a}quivalenzbedingungen gegeben, welche Ambiguit\"aten der Seiberg-Witten Abbildungen darstellen. Die allgemeine Erwartung war, dass die Ambiguit{\"a}ten Feldredefinitionen entsprechen und daher in den Streumatrixelementen verschwinden m\"ussen. In dieser Arbeit wurde jedoch gezeigt, dass dies ab der zweiten Ordnung in Theta nicht der Fall ist und dass die Nichteindeutigkeit der Seiberg-Witten Abbildungen sich durchaus in Observablen niederschl{\"a}gt. Die Vermutung besteht, dass jede neue Ordnung in Theta neue Parameter in die Theorie einf{\"u}hrt. Wie weit und in welche Richtung die Theorie auf nichtkommutativer Raumzeit entwickelt werden muss, kann jedoch nur das Experiment entscheiden.}, subject = {Feldtheorie}, language = {en} } @phdthesis{Bruenger2007, author = {Br{\"u}nger, Christian}, title = {Numerical Studies of Quantum Spin Systems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26439}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Der erste Teil der Arbeit widmet sich der Untersuchung des Bilayer-Heisenberg-Modells und des zweidimensionalen Kondo-Necklace-Modells. Beide Modelle weisen einen Quantenphasen{\"u}bergang zwischen einer geordneten und einer ungeordneten Phase auf. In dieser Arbeit richtet sich das Interesse insbesondere auf die Kopplung der kritischen Fluktuationen an ein in das System eingebundenes Loch. Mittels eines selbstkonsistenten Born'schen N{\"a}herungsverfahrens wird gezeigt, dass das Loch mit den Magnonen derart wechselwirkt, dass dessen Quasiteilchengewicht am quantenkritischen Punkt verschwindet. Um diesen Aspekt weiter zu untersuchen, wird das Verhalten des Quasiteilchengewichts im Bereich der kritischen Kopplung auch mit Quanten-Monte-Carlo-Methoden analysiert. Desweiteren werden die dynamischen Eigenschaften des Loches im magnetischen Hintergrund untersucht. Im zweiten Teil dieser Arbeit gilt das Interesse der Untersuchung des Spiral-Staircase-Heisenberg-Modells. Dieses besteht aus zwei, zu einer Spinleiter ferromagnetisch gekopplten Spin-1/2-Ketten, wobei die antiferromagnetische Kopplung innerhalb der zweiten Kette durch Windung der Leiter variiert werden kann. Dieses Model eignet sich, den {\"U}bergang zwischen einer Spin-1/2-Kette ohne Spinl{\"u}cke und einer Spin-1-Kette mit Spinl{\"u}cke zu studieren. Besondere Beachtung ist dem {\"O}ffnen der Spinl{\"u}cke in Abh{\"a}ngigkeit der ferromagnetischen Kopplung zwischen den Leiterbeinen geboten. Es stellt sich heraus, dass das System, abh{\"a}ngig von der Leiterwindung, wesentliche Unterschiede im Skalierungsverhalten der Spinl{\"u}cke aufweist. Desweiteren wird mittels der String-Order-Parameter gezeigt, dass das Spiral-Staircase-Heisenberg-Modell trotz des unterschiedlichen Skalierungsverhaltens der Spinl{\"u}cke und unabh{\"a}ngig von der Wahl der Parameter sich stets in der Haldane-Phase befindet. Die Analyse der Modelle bedient sich haupts{\"a}chlich Quanten-Monte-Carlo-Methoden, aber auch exakter Diagonalisierungstechniken, sowie auf Molekularfeldn{\"a}herungen gest{\"u}tzten Rechnungen.}, subject = {Spinsystem}, language = {en} } @phdthesis{Zeiner2007, author = {Zeiner, J{\"o}rg}, title = {Noncommutative Quantumelectrodynamics from Seiberg-Witten Maps to All Orders in Theta}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23363}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {The basic question which drove our whole work was to find a meaningful noncommutative gauge theory even for the time-like case (\$\theta^{0 i} \neq 0\$). In order to be able to tackle questions regarding unitarity, it is not sufficient to consider theories which include the noncommutative parameter only up to a finite order. The reason is that in order to investigate tree-level unitarity or the optical theorem in loops one has to know the behavior of the noncommutative theory for center-of-mass energies much greater than the noncommutative scale. Therefore an effective theory, that is by construction only valid up to the noncommutative scale, isn't sufficient for our purpose. Our model is based on two fundamental assumptions. The first assumption is given by the commutation relations \eqref{eq:ncalg}. This led to the Moyal-Weyl star-product \eqref{eq:astproduct2} which replaces all point-like products between two fields. The second assumption is to assume that the model built this way is not only invariant under the noncommutative gauge transformation but also under the commutative one. In order to obtain an action of such a model one has to replace the fields by their appropriate \swms. We chose the gauge fixed action \eqref{eq:actioncgf} as the fundamental action of our model. After having constructed the action of the NCQED including the {\swms} we were confronted with the problem of calculating the {\swms} to all orders in \$\tMN\$. By means of \cite{bbg} we could calculate the {\swms} order by order in the gauge field, where each order in the gauge field contains all orders in the noncommutative parameter (\cf chapter \ref{chapter:swms}). By comparing the maps with the result we obtained from an alternative ansatz \cite{bcpvz}, we realized that already the simplest {\swm} for the gauge field is not unique. In chapter \ref{chapter:ambiguities} we examined this ambiguity, which we could parametrised by an arbitrary function \$\astf\$. The next step was to derive the Feynman rules for our NCQED. One finds that the propagators remain unchanged so that the free theory is equal to the commutative QED. The fermion-fermion-photon vertex contains not only a phase factor coming from the Moyal-Weyl star-product but also two additional terms which have their origin in the \swms. Beside the 3-photon vertex which is already present in NCQED without {\swms} and which has also additional terms coming from the \swms, too, one has a contact vertex which couples two fermions with two photons. After having derived all the vertices we calculated the pair annihilation scattering process \$e^+ e^- \rightarrow \gamma \gamma\$ at Born level. By choosing the parameter \$\kggg = 1\$ (\cf section \ref{sec:represent}), we found that the amplitude of the pair annihilation process becomes equal to the amplitude of the NCQED without \swms. This means that, at least for this process, the NCQED excluding {\swms} is only a special case of NCQED including \swms. On the basis of the pair annihilation process, we afterwards investigated tree-level unitarity. In order to satisfy the tree-level unitarity we had to constrain the arbitrary function \$\astf\$. We found that the series expansion of \$\astf\$ has to start with unity. In addition, the even part of the function must not increase faster than \$s^{-1/2} \log(s)\$ for \$s \rightarrow \infty\$, whereas the odd part of the \$\astf\$-function can't be constrained, at least by the process we considered. By assuming these constrains for the \$\astf\$-function, we could show that tree-level unitarity is satisfied if one incorporates the uncertainties present in the energy and the momenta of the scattered particles, \ie the uncertainties of the center-of-mass energy and the scattering angles. This uncertainties are not exclusively present due to the finite experimental resolution. A delta-like center-of-mass energy as well as delta-like momenta are in general not possible because the scattered particles are never exact plane waves.}, subject = {Raum-Zeit}, language = {en} } @phdthesis{Karg2007, author = {Karg, Stefan}, title = {Calculations of multi-particle processes at the one-loop level: precise predictions for the LHC}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27505}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {The Standard Model (SM) of elementary particle physics provides a uniform framework for the description of three fundamental forces, the electromagnetic and weak forces, describing interactions between quarks and leptons, and the strong force, describing a much stronger interaction between the coloured quarks. Numerous experimental tests have been performed in the last thirty years, showing a spectacular agreement with the theoretical predictions of the Standard Model, even at the per mille level, therefore validating the model at the quantum level. An important cornerstone of the Standard Model is the Higgs mechanism, which provides a possible explanation of electroweak symmetry breaking, responsible for the masses of elementary fermions and the W and Z bosons, the carriers of the weak force. This mechanism predicts a scalar boson, the Higgs boson, which has escaped its discovery so far. If the Higgs mechanism is indeed realised in nature, the upcoming Large Hadron Collider (LHC) at CERN will be able to find the associated Higgs boson. The discovery of a Higgs boson by itself is not sufficient to establish the Higgs mechanism, the basic ingredient being the Higgs potential which predicts trilinear and quartic couplings. These have to be confirmed experimentally by the study of multi-Higgs production. We therefore present a calculation of the loop-induced processes gg to HH and gg to HHH, and investigate the observability of multi-Higgs boson production at the LHC in the Standard Model and beyond. While the SM cross sections are too small to allow observation at the LHC, we demonstrate that physics beyond the SM can lead to amplified, observable cross sections. Furthermore, the applicability of the heavy top quark approximation in two- and three-Higgs boson production is investigated. We conclude that multi-Higgs boson production at the SuperLHC is an interesting probe of Higgs sectors beyond the SM and warrants further study. Despite the great success of the SM, it is widely believed that this model cannot be valid for arbitrarily high energies. The LHC will probe the TeV scale and theoretical arguments indicate the appearance of physics beyond the SM at this scale. The search for new physics requires a precise understanding of the SM. Precise theoretical predictions are needed which match the accuracy of the experiments. For the LHC, most analyses require next-to-leading order (NLO) precision. Only then will we be able to reliably verify or falsify different models. At the LHC, many interesting signatures involve more than two particles in the final state. Precise theoretical predictions for such multi-leg processes are a highly nontrivial task and new efficient methods have to be applied. The calculation of the process PP to VV+jet at NLO is an important background process to Higgs production in association with a jet at the LHC. We compute the virtual corrections to this process which form the "bottleneck" for obtaining a complete NLO prediction. The resulting analytic expressions are generated with highly automated computer routines and translated into a flexible Fortran code, which can be employed in the computation of differential cross sections of phenomenological interest. The obtained results for the virtual corrections indicate that the QCD corrections are sizable and should be taken into account in experimental studies for the LHC.}, subject = {Higgs-Teilchen}, language = {en} }