@article{CaliskanCrouchGiddinsetal.2022, author = {Caliskan, Aylin and Crouch, Samantha A. W. and Giddins, Sara and Dandekar, Thomas and Dangwal, Seema}, title = {Progeria and aging — Omics based comparative analysis}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {10}, issn = {2227-9059}, doi = {10.3390/biomedicines10102440}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-289868}, year = {2022}, abstract = {Since ancient times aging has also been regarded as a disease, and humankind has always strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for finding important indicators and biological markers for pathologies and possible therapeutic targets. An example of the use of omics technologies is the research regarding aging and the rare and fatal premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study, we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging, using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of the dataset (healthy children, nonagenarians and progeria patients), we identified several genes involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this paper, we (1) compare "normal aging" (nonagenarians vs. healthy children) and progeria (HGPS patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of analysis, and (5) present comparative proteomics analyses to show an association between our RNA-Seq data analyses and corresponding changes in protein expression.}, language = {en} } @phdthesis{AlonsoCanizal2020, author = {Alonso Ca{\~n}izal, Maria Consuelo}, title = {Detection of ligand dependent Frizzled conformational changes}, doi = {10.25972/OPUS-17833}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178335}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Frizzled (FZD) are highly conserved receptors that belong to class F of the G protein-coupled receptor (GPCR) superfamily. They are involved in a great variety of processes during embryonic development, organogenesis, and adult tissue homeostasis. In particular, FZD5 is an important therapeutic target due to its involvement in several pathologies, such as tumorigenesis. Nevertheless, little is known regarding the activation of FZD receptors and the signal initiation, and their GPCR nature has been debated. In order to investigate the activation mechanism of these receptors, FRET (F{\"o}rster Resonance Energy Transfer)-based biosensors for FZD5 have been developed and characterized. A cyan fluorescent protein (CFP) was fused to the C-terminus of the receptor and the specific FlAsH-binding sequence (CCPGCC) was inserted within the 2nd or the 3rd intracellular loop. Single-cell FRET experiments performed using one of these sensors, V5-mFZD5-FlAsH436-CFP, reported structural rearrangements in FZD5 upon stimulation with the endogenous ligand WNT-5A. These movements are similar to those observed in other GPCRs using the same technique, which suggests an activation mechanism for FZD reminiscent of GPCRs. Furthermore, stimulation of the FZD5 FRET-based sensor with various recombinant WNT proteins in a microplate FRET reader allowed to obtain concentration-response curves for several ligands, being possible to distinguish between full and partial agonists. This technology allowed to address the selectivity between WNTs and FZD5 using a full-length receptor in living cells. In addition, G protein FRET-based sensors revealed that WNT-5A specifically induced Gαq activation mediated by FZD5, but not Gαi activation. Other WNT proteins were also able to induce Gαq activation, but with lower efficacy than WNT-5A. In addition, a dual DAG/calcium sensor further showed that WNT-5A stimulation led to the activation of the Gαq-dependent signaling pathway mediated by FZD5, which outcome was the activation of Protein Kinase C (PKC) and the release of intracellular calcium. Altogether, these data provide evidence that the activation process of FZD5 resembles the general characteristics of class A and B GPCR activation, and this receptor also mediates the activation of the heterotrimeric Gαq protein and its downstream signaling pathway. In addition, the FZD5 receptor FRET-based sensor provides a valuable tool to characterize the pharmacological properties of WNTs and other potential ligands for this receptor.}, subject = {Fluoreszenz-Resonanz-Energie-Transfer}, language = {en} } @article{vanDintherZhangWeidaueretal.2013, author = {van Dinther, Maarten and Zhang, Juan and Weidauer, Stella E. and Boschert, Verena and Muth, Eva-Maria and Knappik, Achim and de Gorter, David J. J. and van Kasteren, Puck B. and Frisch, Christian and M{\"u}ller, Thomas D. and ten Dijke, Peter}, title = {Anti-Sclerostin Antibody Inhibits Internalization of Sclerostin and Sclerostin-Mediated Antagonism of Wnt/LRP6 Signaling}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0062295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130981}, pages = {e62295}, year = {2013}, abstract = {Sclerosteosis is a rare high bone mass disease that is caused by inactivating mutations in the SOST gene. Its gene product, Sclerostin, is a key negative regulator of bone formation and might therefore serve as a target for the anabolic treatment of osteoporosis. The exact molecular mechanism by which Sclerostin exerts its antagonistic effects on Wnt signaling in bone forming osteoblasts remains unclear. Here we show that Wnt3a-induced transcriptional responses and induction of alkaline phosphatase activity, an early marker of osteoblast differentiation, require the Wnt co-receptors LRP5 and LRP6. Unlike Dickkopf1 (DKK1), Sclerostin does not inhibit Wnt-3a-induced phosphorylation of LRP5 at serine 1503 or LRP6 at serine 1490. Affinity labeling of cell surface proteins with \([^{125} I]\) Sclerostin identified LRP6 as the main specific Sclerostin receptor in multiple mesenchymal cell lines. When cells were challenged with Sclerostin fused to recombinant green fluorescent protein (GFP) this was internalized, likely via a Clathrin-dependent process, and subsequently degraded in a temperature and proteasome-dependent manner. Ectopic expression of LRP6 greatly enhanced binding and cellular uptake of Sclerostin-GFP, which was reduced by the addition of an excess of non-GFP-fused Sclerostin. Finally, an anti-Sclerostin antibody inhibited the internalization of Sclerostin-GFP and binding of Sclerostin to LRP6. Moreover, this antibody attenuated the antagonistic activity of Sclerostin on canonical Wnt-induced responses.}, language = {en} }