@phdthesis{MufusamaKoySita2019, author = {Mufusama Koy Sita, Jean-Pierre}, title = {Quality Assessment of Antimalarial Medicines Sold in the Democratic Republic of the Congo and Phytochemical Investigations on a Congolese Ancistrocladus Liana}, doi = {10.25972/OPUS-19238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192382}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Nowadays, the management of infectious diseases is especially threatened by the rapid emergence of drug resistance. It has been suggested that the medicine quality assurance combined with good medication adherence may help to reduce this impendence. Moreover, the search for new antimicrobial agents from medicinal plants is strongly encouraged for the exploration of alternatives to existing therapies. In this context, the present work focused on both the quality evaluation of commercialized antimalarial medicines from the Democratic Republic of the Congo and on the phytochemical investigations of a Congolese Ancistrocladus species.}, subject = {Antimalariamittel}, language = {en} } @article{LeistnerHolzgrabe2021, author = {Leistner, Adrian and Holzgrabe, Ulrike}, title = {Impurity Profiling of Baclofen Using Gradient HPLC-UV Method}, series = {Chromatographia}, volume = {84}, journal = {Chromatographia}, number = {10}, issn = {1612-1112}, doi = {10.1007/s10337-021-04079-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268921}, pages = {927-935}, year = {2021}, abstract = {The GABA\(_{B}\) receptor agonist baclofen is a medication commonly used for the treatment of muscle spasticity. It is an amino acid and related to the neurotransmitter GABA. In this study, we developed a new, gradient high-performance liquid chromatography (HPLC) method for the impurity assessment of baclofen, which is appropriate for pharmacopoeial purposes. Since the impurities related to the synthesis pathway are acids, zwitterionic, or neutral, the method development is challenging. However, the separation of all components was achieved on a C18 stationary phase using a water-acetonitrile-trifluoroacetic acid gradient. A limit of detection (LOD) of at least 0.02\% was registered for all specified impurities. Additionally, CAD detection was performed to detect potential impurities lacking off a chromophore. The baclofen batches analyzed are far more pure than expected. All impurities were found below the specification limit, and thus, they can be regarded as unspecified. Moreover, the required runtime could be significantly reduced compared to the current USP or Ph. Eur. method.}, language = {en} } @phdthesis{Kuehnreich2016, author = {K{\"u}hnreich, Raphael}, title = {Development and Validation of Methods for Impurity Profiling of Amino Acids}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145718}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The requirements for the impurity profiling of substances for pharmaceutical use have become greater over time. They can be accomplished by the use of modern instrumental analysis techniques, which have been evolved in the last decades. New types of columns with HILIC, mixed-mode and chiral stationary phases are suitable for the separation of all kinds of substances mixtures, that were previously hardly possible with the use of common reversed phase columns. Modern, almost universal detectors like CAD, ELSD and CNLSD can be applied for a sensitive detection of substances without a chromophore. However, in addition to some small individual disadvantages to these methods, the costs are high and applications are still kind of rare. Thus, the introduction of these devices at a broader level has not yet taken place. While this presumably will change over time, there is a need for methods that enable the impurity profiling of challenging substances with widespread analytics devices. Methionine is a substance with hydrophobic and hydrophilic impurities. With the help of a mixed-mode stationary phase, which is a combination of a reversed phase and a strong cationic exchanger, the separation of all putative impurities was found possible with good sensitivity and selectivity. The method requires apart from the column only standard isocratic HPLC equipment and was successfully validated. The evaluation of the enantiomeric purity of amino acids is challenging. Two approaches were made. The first method utilizes CE by means of in-capillary derivation with OPA and the subsequent separation with a cyclodextrin. With the use of OPA/NAC and γ-cyclodextrin, a simple and cost-effective method for the indirect enantioseparation of 16 amino acids was developed. With the second approach, racemic amino acids can be analyzed with HPLC and in-needle derivatization. For this, different columns and chiral thiols were evaluated and the chromatographic parameters were optimized. A method with OPA/NIBLC, a pentafluorophenyl column made the enantioseparation of 17 amino acids feasible. A LOQ of the minor enantiomer down to 0.04 \% can be achieved with UV spectrophotometric detection. A similar method was developed for impurity profiling of L-amino acids. This can be used alternatively for the amino acid analysis performed by the European Pharmacopoeia. A simple, robust, precise and accurate method for the evaluation of impurities in glyceryl trinitrate solution was developed and validated. The four impurities of glyceryl trinitrate are separated by means of an acetonitrile-water gradient and the assay for this substance is also possible.}, subject = {Aminos{\"a}uren}, language = {en} }